我正在尝试运行以下代码
#ROC
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import StratifiedKFold
from scipy import interp
from sklearn.ensemble import RandomForestClassifier
clf_1 = RandomForestClassifier()
cv = StratifiedKFold(n_splits=10)
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
for i, (train, test) in enumerate(cv.split(X, y)):
probas_ = clf_1.fit(X[train], y[train]).predict_proba(X[test])
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1], pos_label="normal")
tprs.append(interp(mean_fpr, fpr, tpr))
tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
# plt.plot(fpr, tpr, lw=1, alpha=0.3,
# label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc))
i += 1
plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
label='Luck', alpha=.8)
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
plt.plot(mean_fpr, mean_tpr, color='g',
label=r'RF Mean ROC (AUC = %0.6f $\pm$ %0.4f)' % (mean_auc, std_auc),
lw=2, alpha=.8)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,
label=r'$\pm$ 1 std. dev.')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
我收到以下错误消息
ValueError Traceback (most recent call last)
<ipython-input-13-ea49bde52419> in <module>
14 for i, (train, test) in enumerate(cv.split(X, y)):
15
---> 16 probas_ = clf_1.fit(X[train], y[train]).predict_proba(X[test])
17 fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1], pos_label="normal")
18 tprs.append(interp(mean_fpr, fpr, tpr))
~\user data\installation\Anaconda\lib\site-packages\sklearn\ensemble\forest.py in fit(self, X, y, sample_weight)
248 # Validate or convert input data
249 X = check_array(X, accept_sparse="csc", dtype=DTYPE)
--> 250 y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None)
251 if sample_weight is not None:
252 sample_weight = check_array(sample_weight, ensure_2d=False)
~\user data\installation\Anaconda\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
540 if force_all_finite:
541 _assert_all_finite(array,
--> 542 allow_nan=force_all_finite == 'allow-nan')
543
544 if ensure_min_samples > 0:
~\user data\installation\Anaconda\lib\site-packages\sklearn\utils\validation.py in _assert_all_finite(X, allow_nan)
58 elif X.dtype == np.dtype('object') and not allow_nan:
59 if _object_dtype_isnan(X).any():
---> 60 raise ValueError("Input contains NaN")
61
62
ValueError: Input contains NaN
这里所有其他代码都能正常工作是什么问题? 该程序取自here 我不懂中文,所以不知道评论中提到了什么。 但这对我来说似乎很有趣,我正在执行的文件是this。
代码中使用的数据集为this。