我的第一层是:
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding="same", activation="relu", input_shape=[32, 32, 3]))
“模型”摘要表中的参数数量:
Layer (type) Output Shape Param #
=================================================================
conv2d_4 (Conv2D) (None, 32, 32, 32) 896
据我了解,参数的数量必须为:
(No of filters) X (Number of parameters in Kernel)
即就我而言==> 32 X (3 X 3) = 288
但是它是896。896是怎么回事?
谢谢
答案 0 :(得分:3)
Keras Conv2D层中的参数数量使用以下公式计算:
number_parameters = out_channels * (in_channels * kernel_h * kernel_w + 1) # 1 for bias
所以,就您而言,
in_channels = 3
out_channels = 32
kernel_h = kernel_w = 3
number_parameters = 32(3*3*3 + 1) = 896