我想复制一个Conv2D图层。
我尝试过:
编辑:我已将示例代码更改为mcve
Edit2:我已根据fuglede的答案更改了代码
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.datasets import mnist
from keras.utils import to_categorical
import matplotlib.pyplot as plt
import numpy as np
import random
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 28, 28, 1)
X_test = X_test.reshape(10000, 28, 28, 1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = Sequential()
model.add(Conv2D(random.randint(32, 64), kernel_size=random.randint(1, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(32, kernel_size=3, activation='relu'))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
other_model = Sequential()
layer = model.layers[1]
other_model.add(Conv2D(random.randint(32, 64), kernel_size=random.randint(1, 3), activation='relu', input_shape=(28, 28, 1)))
copy_layer = Conv2D(layer.filters, kernel_size=layer.kernel_size, activation='relu')
other_model.add(copy_layer)
copy_layer.set_weights(layer.get_weights())
但是我遇到了这个错误:
ValueError: Layer weight shape (3L, 3L, 61L, 32L) not compatible with provided weight shape (3L, 3L, 40L, 32L)
编辑:这样做的目的是,我正在使用一种遗传算法来进化/“训练”一组神经网络,这是交叉步骤的一部分。
答案 0 :(得分:1)
之所以会这样,是因为该图层仅在添加到模型后才被初始化。如果您交换示例的最后两行,它应该可以按预期工作。