因此,我一直难以在数据上绘制混淆矩阵。我正在使用python 3.6在pycharm上进行图像分类。以下是我的代码,谁能告诉我我的代码是否正常工作?因为我可以看到结果的混淆矩阵,但是我不确定我所做的是否正确。
import tensorflow as tf
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
DATADIR = "C:/Users/Acer/imagerec/MRI"
CATEGORIES = ["yes", "no"]
for category in CATEGORIES:
path = os.path.join(DATADIR,category)
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path,img) ,cv2.IMREAD_GRAYSCALE)
plt.imshow(img_array, cmap='gray')
plt.show()
break
break
print(img_array)
print(img_array.shape)
IMG_SIZE = 50
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
plt.imshow(new_array, cmap='gray')
plt.show()
training_data = []
def create_training_data():
for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path):
try:
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num])
except Exception as e:
pass
create_training_data()
print(len(training_data))
import random
random.shuffle(training_data)
for sample in training_data[:10]:
print(sample[1])
X = []
y = []
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
import pickle
pickle_in = open("X.pickle","rb")
X = pickle.load(pickle_in)
pickle_in = open("y.pickle","rb")
y = pickle.load(pickle_in)
X = X/255.0
model = Sequential()
model.add(Conv2D(256, (3, 3), input_shape=X.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X, y, batch_size=5, epochs=20, validation_split=0.1)
from sklearn.metrics import confusion_matrix
pred = model.predict(X)
pred = np.round(pred)
conf = confusion_matrix(y, pred)
import seaborn as sns
sns.heatmap(conf, annot=True)
import matplotlib.pyplot as plt
plt.show()
model.save('64x2-CNN.model')