使用Python 3.7上的最新matplotlib版本,我尝试绘制一个混淆矩阵(并将其保存为png)。虽然所得图原则上很好,但单元的大小不同,请参见此处:
如屏幕截图所示,实际上只有中间单元格的大小正确,所有其他单元格(在这种情况下,即所有边界单元格)的大小似乎都只有中间单元格的一半甚至四分之一。 / p>
我正在运行的源代码很简单:
import os
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix
def create_save_plotted_confusion_matrix(conf_matrix, expected_labels, basepath):
ax, title = plot_confusion_matrix(conf_matrix, expected_labels, normalize=False)
filepath = os.path.join(basepath, '.png')
plt.savefig(filepath, bbox_inches='tight')
def plot_confusion_matrix(cm, classes, normalize=False, title=None, cmap=plt.cm.Blues):
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
else:
pass
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax, title
if __name__ == '__main__':
y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
confmat = confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
create_save_plotted_confusion_matrix(confmat, ["ant", "bird", "cat"], '.')