气流:损坏的DAG:[/root/airflow/dags/dag_test1.py]参数['execution_time']是必需的

时间:2019-11-18 14:19:12

标签: airflow

import airflow
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
#from airflow.contrib.operators.spark_submit_operator import SparkSubmitOperator
from airflow.models import Variable
from datetime import datetime, timedelta
from epsilon_spark_operator import EpsilonSparkOperator
#from merlin_spark_submit_operator import MerlinSparkSubmitOperator
#start=timedelta(hours=3)
default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': airflow.utils.dates.days_ago(2),
#    'end_date': datetime(2019, 12, 12),
#    'schedule_interval': '37 12 * * *'
    'email': ['ankit.maloo@inmobi.com'],
    'email_on_failure': True,
    'email_on_retry': True,
    'retries': 1,
    'retry_delay': timedelta(minutes=1),
    'queue': 'default'
}
dag = DAG('epsilon_spark_test', default_args=default_args, schedule_interval='@once')
spark_submit_task = EpsilonSparkOperator(
    task_id='spark_submit_job',
    conn_id='epsilon_spark',
    application='abfs://***********.jar',
    java_class='com.inmobi.EpsilonTest',
    application_args=['10'],
    verbose=True,
    cluster_name="*****",
    azure_storage_conn_id="*****",
    keyvault_name='*****',
    keyvault_client_id_key='*****',
    keyvault_client_secret_key='*****',
    conf={'spark.executors': '30', 'spark.eventLog.enabled': 'false', 'spark.eventLog.dir':'/tmp', 'spark.shuffle.service.enabled':'true'},
    dag=dag)
dag >> spark_submit_task

我正在尝试通过示例火花作业测试气流簇。 上面是我的python代码。 尝试通过curl部署dag

curl -X POST -H 'Content-Type: multipart/form-data' -F 'dag_file=@/Users/ankit.maloo/dag_test.py' -F 'force=on' 'http://*.*.*.*:8080/admin/rest_api/api?api=deploy_dag'

给出错误为 损坏的DAG:[/root/airflow/dags/dag_test1.py]参数['execution_time']是必需的。 有想法吗?

0 个答案:

没有答案