我是python和airflow的新手,我使用GCP composer环境创建DAG。
在此python代码中,我创建了两个任务,一个任务是读取zip或csv文件,另一个任务是创建dataproc集群。在一项任务中,我调用一种方法readYML,该方法正在读取yml配置文件中的dataproc集群参数,例如cluster-name,project_id等,而在第二项任务中,我将使用相同的参数,请参见以下代码,以更好地理解
# Importing Modules
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta
from zipfile import ZipFile
from airflow.models import Variable
import yaml
from google.cloud import storage
from airflow.contrib.operators import dataproc_operator
import pandas as pd
global cfg
def readYML():
print("inside readzip")
file_name = "/home/airflow/gcs/data/cluster_config.yml"
with open(file_name, 'r') as ymlfile:
cfg = yaml.load(ymlfile)
print("inside readYML method : ", cfg['configs']['project_id'])
def iterate_bucket():
global blobs
bucket_name = 'europe-west1-airflow-test-9bbb5fc7-bucket'
storage_client = storage.Client.from_service_account_json(
'/home/airflow/gcs/data/service_account_key_gcp_compute_bmg.json')
bucket = storage_client.get_bucket(bucket_name)
blobs = bucket.list_blobs()
def print_PcsvData():
iterate_bucket()
readYML()
global readPcsv
for blob in blobs:
if "physical.zip" in blob.name:
print("hello : ", blob.name)
file_name = "/home/airflow/gcs/" + blob.name
with ZipFile(file_name, 'r') as zip:
# printing all the contents of the zip file
for info in zip.infolist():
readfilename = info.filename
print(readfilename)
readPcsv = pd.read_csv("/home/airflow/gcs/data/" + readfilename)
print("physi cal.csv : ", readPcsv)
print('Done!')
dag_name = Variable.get("dag_name")
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime.now(),
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
'cluster_name': cfg['configs']['cluster_name'],
}
# Instantiate a DAG
dag = DAG(dag_id='read_yml', default_args=default_args,
schedule_interval=timedelta(days=1))
# Creating Tasks
t1 = PythonOperator(task_id='Raw1', python_callable=print_PcsvData,
dag=dag)
create_dataproc_cluster = dataproc_operator.DataprocClusterCreateOperator(
task_id='create_dataproc_cluster',
project_id=cfg['configs']['project_id'],
cluster_name=cfg['configs']['cluster_name'],
num_workers=cfg['configs']['num_workers'],
zone=cfg['configs']['zone'],
master_machine_type=cfg['configs']['master_machine_type'],
worker_machine_type=cfg['configs']['worker_machine_type'],
dag=dag)
t1 >> create_dataproc_cluster
在此代码中,我想全局使用cfg变量,在默认的args中,我也想访问此变量,但出现错误,我不知道它的范围相关问题,甚至我在readYML方法中声明了cfg变量而且仍然错误仍然存在。 任何帮助,将不胜感激。 预先感谢
答案 0 :(得分:1)
检查下面应使用的DAG文件:
您应该进行的一些更改:
datetime.now()
-https://airflow.apache.org/faq.html#what-s-the-deal-with-start-date 更新的文件:
# Importing Modules
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta
from zipfile import ZipFile
from airflow.models import Variable
import yaml
from google.cloud import storage
from airflow.contrib.operators import dataproc_operator
import pandas as pd
def readYML():
print("inside readzip")
file_name = "/home/airflow/gcs/data/cluster_config.yml"
with open(file_name, 'r') as ymlfile:
cfg = yaml.load(ymlfile)
print("inside readYML method : ", cfg['configs']['project_id'])
return cfg
def iterate_bucket():
bucket_name = 'europe-west1-airflow-test-9bbb5fc7-bucket'
storage_client = storage.Client.from_service_account_json(
'/home/airflow/gcs/data/service_account_key_gcp_compute_bmg.json')
bucket = storage_client.get_bucket(bucket_name)
blobs = bucket.list_blobs()
return blobs
def print_PcsvData():
blobs = iterate_bucket()
for blob in blobs:
if "physical.zip" in blob.name:
print("hello : ", blob.name)
file_name = "/home/airflow/gcs/" + blob.name
with ZipFile(file_name, 'r') as zip:
# printing all the contents of the zip file
for info in zip.infolist():
readfilename = info.filename
print(readfilename)
readPcsv = pd.read_csv("/home/airflow/gcs/data/" + readfilename)
print("physi cal.csv : ", readPcsv)
print('Done!')
return readPcsv
dag_name = Variable.get("dag_name")
cfg = readYML()
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': airflow.utils.dates.days_ago(2),
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
'cluster_name': cfg['configs']['cluster_name'],
}
# Instantiate a DAG
dag = DAG(dag_id='read_yml', default_args=default_args,
schedule_interval=timedelta(days=1))
# Creating Tasks
t1 = PythonOperator(task_id='Raw1', python_callable=print_PcsvData,
dag=dag)
create_dataproc_cluster = dataproc_operator.DataprocClusterCreateOperator(
task_id='create_dataproc_cluster',
project_id=cfg['configs']['project_id'],
cluster_name=cfg['configs']['cluster_name'],
num_workers=cfg['configs']['num_workers'],
zone=cfg['configs']['zone'],
master_machine_type=cfg['configs']['master_machine_type'],
worker_machine_type=cfg['configs']['worker_machine_type'],
dag=dag)
t1 >> create_dataproc_cluster