我正在使用sklearn导入数据:
from sklearn import datasets
dataset = datasets.fetch_openml('credit-g', version = 'active')
sklearn可以将分类数据转换为数字。
现在我想将此数据集转换为Pandas DataFrame:
data = pd.DataFrame(dataset.data, columns = dataset.feature_names)
data['class'] = pd.Series(dataset.target)
但是此命令会删除所有分类数据-它们现在是数字。
我想要的是在转换后将原始文本标签替换为数字的数据框。因此,从sklearn数据框转换为熊猫数据框后,数据看起来应该相同,就像我只是使用以下命令下载了该数据一样:
pd.read_csv("https://www.openml.org/data/get_csv/31/dataset_31_credit-g.arff")
有可能吗?
答案 0 :(得分:1)
根据fetch_openml
的文档,返回的字典包含:
[...] data : np.array or scipy.sparse.csr_matrix of floats The feature matrix. Categorical features are encoded as ordinals. [...] categories : dict Maps each categorical feature name to a list of values, such that the value encoded as i is ith in the list. [...]
没有选项可以不对分类特征进行编码。只要您将使用sklearn
来下载数据集,就会有浮点数而不是字符串。
但是,由于还返回了类别,因此您可以使用以下分类功能重建具有分类特征的“基础”数据集(我不确定这是最快的解决方案,还是更优雅的解决方案):
from sklearn import datasets
import pandas as pd
import numpy as np
def main():
dataset = datasets.fetch_openml('credit-g', version = 'active')
raws = [
np.take(dataset['categories'][feature], dataset['data'][:,i].astype(int)) # Take string value for categorical features
if feature in dataset['categories'] else dataset['data'][:,i] # Else use the floats as is
for i, feature in enumerate(dataset['feature_names'])
]
data = pd.DataFrame(np.stack(raws, axis=1), columns=dataset.feature_names)
data['class'] = pd.Series(dataset.target)
print("Initial dtypes:")
print(data.dtypes)
dtypes = {
f: 'category' if f in dataset['categories'] else 'float'
for f in dataset['feature_names']
}
dtypes['class'] = 'category'
data = data.astype(dtypes)
print("\nFirst cast:")
print(data.dtypes)
int_cols = [1, 4, 12]
data.iloc[:, int_cols] = data.iloc[:, int_cols].astype('int64')
print("\nInt cast:")
print(data.dtypes)
if __name__ == '__main__':
main()