tldr :我的实现显然的内存使用量随通过的样本数量而增加,但网络/样本馈送中应该没有任何东西在乎到目前为止,已经传递了许多样本。
当通过功能性API创建的自定义Keras模型传递大量高维数据标志时,我观察到我假设 GPU内存使用量不断增长,并且观察到的实例数量不断增加。以下是将样本通过网络传递的过程的最小示例:
sequence_length = 100
batch_size = 128
env = gym.make("ShadowHand-v1")
_, _, joint = build_shadow_brain(env, bs=batch_size)
optimizer: tf.keras.optimizers.Optimizer = tf.keras.optimizers.SGD()
start_time = time.time()
for t in tqdm(range(sequence_length), disable=False):
sample_batch = (
tf.random.normal([batch_size, 1, 200, 200, 3]),
tf.random.normal([batch_size, 1, 48]),
tf.random.normal([batch_size, 1, 92]),
tf.random.normal([batch_size, 1, 7])
)
with tf.GradientTape() as tape:
out, v = joint(sample_batch)
loss = tf.reduce_mean(out - v)
grads = tape.gradient(loss, joint.trainable_variables)
optimizer.apply_gradients(zip(grads, joint.trainable_variables))
joint.reset_states()
print(f"Execution Time: {time.time() - start_time}")
我知道以下事实:给定批次大小,这是一个很大的样本,但是,如果实际上对于我的GPU来说太大,我会期望立即出现OOM错误,并且我还假定实际上有6GB的VRAM满足。那是因为仅在33个实例之后才发生OOM错误,这使我怀疑内存使用量正在不断增加。
请参见以下我的模型的 Keras摘要:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
visual_input (InputLayer) [(32, None, 200, 200 0
__________________________________________________________________________________________________
proprioceptive_input (InputLaye [(32, None, 48)] 0
__________________________________________________________________________________________________
somatosensory_input (InputLayer [(32, None, 92)] 0
__________________________________________________________________________________________________
time_distributed (TimeDistribut (None, None, 64) 272032 visual_input[0][0]
__________________________________________________________________________________________________
time_distributed_1 (TimeDistrib (None, None, 8) 848 proprioceptive_input[0][0]
__________________________________________________________________________________________________
time_distributed_2 (TimeDistrib (None, None, 8) 3032 somatosensory_input[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, None, 80) 0 time_distributed[0][0]
time_distributed_1[0][0]
time_distributed_2[0][0]
__________________________________________________________________________________________________
time_distributed_3 (TimeDistrib (None, None, 48) 3888 concatenate[0][0]
__________________________________________________________________________________________________
time_distributed_4 (TimeDistrib (None, None, 48) 0 time_distributed_3[0][0]
__________________________________________________________________________________________________
time_distributed_5 (TimeDistrib (None, None, 32) 1568 time_distributed_4[0][0]
__________________________________________________________________________________________________
time_distributed_6 (TimeDistrib (None, None, 32) 0 time_distributed_5[0][0]
__________________________________________________________________________________________________
goal_input (InputLayer) [(32, None, 7)] 0
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (32, None, 39) 0 time_distributed_6[0][0]
goal_input[0][0]
__________________________________________________________________________________________________
lstm (LSTM) (32, 32) 9216 concatenate_1[0][0]
__________________________________________________________________________________________________
dense_10 (Dense) (32, 20) 660 lstm[0][0]
__________________________________________________________________________________________________
dense_11 (Dense) (32, 20) 660 lstm[0][0]
__________________________________________________________________________________________________
activation (Activation) (32, 20) 0 dense_10[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (32, 20) 0 dense_11[0][0]
__________________________________________________________________________________________________
concatenate_2 (Concatenate) (32, 40) 0 activation[0][0]
activation_1[0][0]
__________________________________________________________________________________________________
dense_12 (Dense) (32, 1) 33 lstm[0][0]
==================================================================================================
Total params: 291,937
Trainable params: 291,937
Non-trainable params: 0
__________________________________________________________________________________________________
如您所见,该网络中有一个LSTM层。它通常应该是有状态的,但是我已经关闭了此功能,因为我以为问题出在那儿。实际上,我已经尝试了以下方法,但并未消除问题
现在我对这个问题的潜在原因的想法已经结束。
我也已将进程强制进入CPU 并检查了标准内存(此处未发生OOM,因为我的RAM比VRAM多得多)。有趣的是,内存使用量会上升和下降,但是有上升的趋势。对于每个实例,大约要占用2GB的内存,但是在获取下一个样本之前释放内存时,只会释放比所占用的内存少大约200MB的内存。
编辑1:如评论中所述,问题可能是在输入上调用模型会增加计算图的事实。但是我不能使用joint.predict()
,因为我需要计算渐变。
编辑2:我更加密切地监视了内存的增长,实际上发生的是每次迭代都会保留一些内存,正如您在此处看到的前9个步骤:
0: 8744054784
1: 8885506048
2: 9015111680
3: 9143611392
4: 9272619008
5: 9405591552
6: 9516531712
7: 9647988736
8: 9785032704
此操作的批处理大小为32。一个sample_batch
的大小为256 * (200 * 200 * 3 + 48 + 92 + 7) * 32 = 984244224
位(精度为float32
),这或多或少表明确实存在问题在于如@MatiasValdenegro所建议的那样,当样本通过网络传递时,由于它是象征性的,因此样本被添加到图形中。因此,我想这个问题现在归结为“即使是一件事,如何使张量变得非符号化”。
免责声明:我知道您无法使用给定的代码重现该问题,因为缺少组件,但是我无法在此处提供完整的项目代码。
答案 0 :(得分:0)
我花了一段时间,但现在已经解决了这个问题。正如我之前在“问题”中所做的编辑一样:问题是Keras的功能API似乎正在将每个样本添加到计算图中,而没有删除迭代后不再需要的输入。似乎没有简单的方法可以明确地将其删除,但是 tf.function
装饰器可以解决此问题。
从上面的代码示例中,它可以按以下方式应用:
sequence_length = 100
batch_size = 256
env = gym.make("ShadowHand-v1")
_, _, joint = build_shadow_brain(env, bs=batch_size)
plot_model(joint, to_file="model.png")
optimizer: tf.keras.optimizers.Optimizer = tf.keras.optimizers.SGD()
@tf.function
def _train():
start_time = time.time()
for _ in tqdm(range(sequence_length), disable=False):
sample_batch = (tf.convert_to_tensor(tf.random.normal([batch_size, 4, 224, 224, 3])),
tf.convert_to_tensor(tf.random.normal([batch_size, 4, 48])),
tf.convert_to_tensor(tf.random.normal([batch_size, 4, 92])),
tf.convert_to_tensor(tf.random.normal([batch_size, 4, 7])))
with tf.GradientTape() as tape:
out, v = joint(sample_batch, training=True)
loss = tf.reduce_mean(out - v)
grads = tape.gradient(loss, joint.trainable_variables)
optimizer.apply_gradients(zip(grads, joint.trainable_variables))
print(f"Execution Time: {time.time() - start_time}")
_train()
也就是说,训练循环可以与tf.function
装饰器一起提供。这意味着训练将在图形模式下执行,由于某种原因,这消除了问题,最有可能的原因是图形将在函数结束后转储。有关tf.function
的更多信息,请参见主题上的TF2.0 Guide。