我使用“ svm”分类器将其分类为自行车还是汽车。 所以,我的特征是0,1,2列,从属是第三列。我可以清楚地看到分类,但是我不知道如何根据图表中的分类打印所有点。
import numpy as np
import operator
from matplotlib import pyplot as plt
from sklearn import svm
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.svm import SVC
dataframe=pd.read_csv(DATASET_PATH)
dataframe = dataframe.dropna(how='any',axis=0)
SVM_Trained_Model = preprocessing.LabelEncoder()
train_data=dataframe[0:len(dataframe)]
le=preprocessing.LabelEncoder()
col=dataframe.columns[START_TRAIN_COLUMN:].astype('U')
col_name=["no_of_wheels","dimensions","windows","vehicle_type"]
for i in range(0,len(col_name)):
self.train_data[col_name[i]]=le.fit_transform(self.train_data[col_name[i]])
train_column=np.array(train_data[col]).astype('U')
data=train_data.iloc[:,[0,1,2]].values
target=train_data.iloc[:,3].values
data_train, data_test, target_train, target_test = train_test_split(data,target, test_size = 0.30,
random_state = 0) `split test and test train`
svc_model=SVC(kernel='rbf', probability=True))'classifier model'
svc_model.fit(data_train, target_train)
all_labels =svc_model.predict(data_test)
X_set, y_set = data_train, target_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step =
0.01),np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
Xpred = np.array([X1.ravel(), X2.ravel()] + [np.repeat(0, X1.ravel().size) for _ in range(1)]).T
pred = svc_model.predict(Xpred).reshape(X1.shape)
plt.contourf(X1, X2, pred,alpha = 0.75, cmap = ListedColormap(('white','orange','pink')))
plt.xlim(X1.min(),X1.max())
plt.ylim(X2.min(), X2.max())
colors=['red','yellow','cyan','blue']
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],c = ListedColormap((colors[i]))(i), label
= j)
plt.title('Multiclass Classifier ')
plt.xlabel('Features')
plt.ylabel('Dependents')
plt.legend()
plt.show()
所以这是我的图表,我需要根据图表中的粉红色和白色区域使用python print()打印这些点。请帮助我获得这些点。
答案 0 :(得分:1)
您只需选择并使用2个特征即可绘制2D表面图。
from sklearn.svm import SVC
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
y = iris.target
def make_meshgrid(x, y, h=.02):
x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
return xx, yy
def plot_contours(ax, clf, xx, yy, **params):
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
out = ax.contourf(xx, yy, Z, **params)
return out
model = svm.SVC(kernel='linear')
clf = model.fit(X, y)
fig, ax = plt.subplots()
# title for the plots
title = ('Decision surface of linear SVC ')
# Set-up grid for plotting.
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)
plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_ylabel('y label here')
ax.set_xlabel('x label here')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
ax.legend()
plt.show()