我正在使用YOLO进行对象检测。当我在Google Colab中运行以下代码时,会显示该图像,但是当我将代码保存在py文件中时,它不会显示该图像。
import cv2
import numpy as np
import core.utils as utils
import tensorflow as tf
from PIL import Image
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
pb_file = "./yolov3_coco.pb"
image_path = "./docs/images/road.jpeg"
num_classes = 80
input_size = 416
graph = tf.Graph()
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
original_image_size = original_image.shape[:2]
image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
with tf.Session(graph=graph) as sess:
pred_sbbox, pred_mbbox, pred_lbbox = sess.run(
[return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={ return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3)
bboxes = utils.nms(bboxes, 0.45, method='nms')
image = utils.draw_bbox(original_image, bboxes)
image = Image.fromarray(image)
image # image works but image.show() does not work.
我也尝试使用
cv2_imshow(image)
但是它不起作用。在这种情况下,它将引发以下错误:
AttributeError: 'Image' object has no attribute 'clip'
如果使用image.show()不会引发任何错误,但不会显示图像和边框!
有什么主意吗?
答案 0 :(得分:0)
首先,由于您正在使用Pillow
读取图像,因此您可能应该将其用于show
:
im = Image.open(path)
im.show()
我确定它可以在Jupyter上使用,因为PIL.show()
在将图像存储到临时文件中之后调用了外部程序来显示图像。对于您的情况,我建议您这样做:
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(im)
plt.show()
答案 1 :(得分:0)
每当您再次加载此文件时,以.ipynb格式保存笔记本-绘图将可见。