我正在考虑将代码转换为可与NumPy一起使用,并且具有以下功能:
def Clean_One_State(ListsToConvert):
# Removes duplicate states
prev_bool = 2
returnlist = []
for value in enumerate(ListsToConvert[1:], 0):
if value[1] != prev_bool:
try:
returnlist.append(value)
prev_bool = value[1]
except IndexError:
returnlist.append(value)
prev_bool = value[1]
return returnlist
该函数在句子中删除输入中与先前记录具有相同状态的记录。 根据您自己的需要,该函数的输入和输出是:
In:[['Event Time', 'State at A'],[0.0, 1], [0.03253, 1], [0.04757, 0],
[0.08479, 0], [0.98534, 1], [0.98748, 1], [1.03602, 0], [1.03717, 0],
[1.95898, 0], [1.96456, 1], [2.00913, 1], [2.01547, 0]...
Out: [[0.0, 1], [0.04757, 0], [0.98534, 1], [1.03602, 0], [1.96456, 1], [2.01547, 0]...
理想情况下,我希望能够查看输入列表的视图(在NumPy中),以便可以删除将影响输入列表的输出列表中的记录。我在网上看了一些示例,但仍然对如何执行此操作持怀疑态度。
答案 0 :(得分:1)
一种非常标准的numpy方法是使用高级索引:
data = [['Event Time', 'State at A'],[0.0, 1], [0.03253, 1], [0.04757, 0],
[0.08479, 0], [0.98534, 1], [0.98748, 1], [1.03602, 0], [1.03717, 0],
[1.95898, 0], [1.96456, 1], [2.00913, 1], [2.01547, 0]]
# convert to array
ar = np.array([*map(tuple,data[1:])],dtype=[*zip(data[0],(float,int))])
ar
# array([(0. , 1), (0.03253, 1), (0.04757, 0), (0.08479, 0),
# (0.98534, 1), (0.98748, 1), (1.03602, 0), (1.03717, 0),
# (1.95898, 0), (1.96456, 1), (2.00913, 1), (2.01547, 0)],
# dtype=[('Event Time', '<f8'), ('State at A', '<i8')])
# find places where State at A changes and select them from ar
# prepend something that is not equal to the first State at A, so the
# very first item is also selected
ar[np.diff(ar['State at A'],prepend=ar['State at A'][0]-1).nonzero()]
# array([(0. , 1), (0.04757, 0), (0.98534, 1), (1.03602, 0),
# (1.96456, 1), (2.01547, 0)],
# dtype=[('Event Time', '<f8'), ('State at A', '<i8')])