LabelEncoding多个分类列

时间:2019-11-07 14:11:03

标签: python machine-learning scikit-learn

我有一个混合了int,float,categorical和bool数据类型的DataFrame,我正在尝试使用LabelEncoder.fit_transform将class分类和bool的数据类型转换为int。在单列上执行时,它工作得很好,但是当我尝试通过DF进行for循环时,出现以下错误:

relabel = preprocessing.LabelEncoder()
for i in first_buyer.columns:
    if str(first_buyer[i].dtypes) not in ["float64","int64","bool"]:
        first_buyer[i] = relabel.fit_transform(first_buyer[i])

错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
~\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py in _encode(values, uniques, encode)
    104         try:
--> 105             res = _encode_python(values, uniques, encode)
    106         except TypeError:

~\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py in _encode_python(values, uniques, encode)
     58     if uniques is None:
---> 59         uniques = sorted(set(values))
     60         uniques = np.array(uniques, dtype=values.dtype)

TypeError: '<' not supported between instances of 'str' and 'int'

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
<ipython-input-17-42e60975f0b6> in <module>
      4 for i in first_buyer.columns:
      5     if str(first_buyer[i].dtypes) not in ["float64","int64","bool"]:
----> 6         first_buyer[i] = relabel.fit_transform(first_buyer[i])

~\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py in fit_transform(self, y)
    234         """
    235         y = column_or_1d(y, warn=True)
--> 236         self.classes_, y = _encode(y, encode=True)
    237         return y
    238 

~\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py in _encode(values, uniques, encode)
    105             res = _encode_python(values, uniques, encode)
    106         except TypeError:
--> 107             raise TypeError("argument must be a string or number")
    108         return res
    109     else:

TypeError: argument must be a string or number

我尝试从其他人使用OneHotCoder和MultiColumnLabelEncoder类,但是它们都给我带来了相同的错误

MultiColumnLabelEncoder(columns = [col for col in first_buyer if 
str(first_buyer[i].dtypes) not 
in["float64","int64","bool"]]).fit_transform(first_buyer)

我希望代码的输出会将所有分类变量转换为数字,以便我可以训练数据集

1 个答案:

答案 0 :(得分:0)

尽管我还没有看到您的数据框,但是很可能是由于其中一个列中存在NA或存在混合类型的列而导致该错误。

以这个为例:

from sklearn.preprocessing import LabelEncoder
import numpy as np
import pandas as pd

relabel = LabelEncoder()

# Nas in the dataframe
data1 = pd.DataFrame([['a', 'b', 'c'] ,['1', '2', np.nan]], columns=['A', 'B', 'C'])
# Will raise an error
relabel.fit_transform(data1['C'])

# Mixed types
data2 = pd.DataFrame([['a', 'b', 'c'], ['1', '2', 3]], columns=['A', 'B', 'C'])
# Will raise an error
relabel.fit_transform(data2['C'])

# Clean data
data3 = pd.DataFrame([['a', 'b', 'c'], ['1', '2', '3']], columns=['A', 'B', 'C'])
# Will work
relabel.fit_transform(data3['C'])

具有混合类型的列通过过滤器的原因是其“ dtype”是“对象”

在使用LabelEncoder之前,您应该做一些额外的预处理,以确保您的列没有缺失的值并且具有相同的类型。

如果您知道要转换的列的所有dtype,还应该使用“在”而不是“不在”的过滤器。

您可以通过使用column对象的fillna()和astype()方法来做到这一点:

# Define a dummy variable for missing values that is of the same type as the column 
data1['C'] = data1['C'].fillna('DUMMY_VARIABLE_FOR_NA')
# Will work now
relabel.fit_transform(data1['C'])

data2['C'] = data2['C'].astype(str)
# Will work now
relabel.fit_transform(data2['C'])