我有两个数据帧,分别是df1和df2。我想对df2中的“ New_Amount_Dollar”列执行操作。基本上,在df1中,我具有历史货币数据,并且我想对df2中的Currency和Amount_Dollar进行按日期的操作,以计算df2中New_Amount_Dollar列的值。
对于'货币'== [AUD,BWP]我们需要将Amount_Dollar乘以相应日期的相应货币值。
对于其他货币,我们需要将Amount_Dollar除以相应日期的相应货币值。
例如,在df2中,对于Date = '01 -01-2019',我有第一种货币作为AUD,因此我要计算这样的New_Amount_Dollar值
New_Amount_Dollar = Amount_Dollar * df1中的AUD值,即New_Amount_Dollar = 19298 * 98 = 1891204
另一个示例,在df2中,我以第三种货币作为COP的Date = '03 -01-2019,因此我要计算这样的New_Amount_Dollar值
New_Amount_Dollar = df1中的Amount_Dollar / COP值,即New_Amount_Dollar = 5000 / 0.043 = 116279.06
import pandas as pd
data1 = {'Date':['01-01-2019', '02-01-2019', '03-01-2019',
'04-01-2019','05-01-2019'],
'AUD':[98, 98.5, 99, 99.5, 97],
'BWP':[30,31,33,32,31],
'CAD':[0.02,0.0192,0.0196,0.0196,0.0192],
'BND':[0.99,0.952,0.970,0.980,0.970],
'COP':[0.05,0.047,0.043,0.047,0.045]}
df1 = pd.DataFrame(data1)
data2 = {'Date':['01-01-2019', '02-01-2019', '03-01-2019', '04-01-2019','05-01-2019'],
'Currency':['AUD','AUD','COP','CAD','BND'],
'Amount_Dollar':[19298, 19210, 5000, 200, 2300],
'New_Amount_Dollar':[0,0,0,0,0]
}
df2 = pd.DataFrame(data2)
print (df2)
df1
Date AUD BWP CAD BND COP
0 01-01-2019 98.0 30 0.0200 0.990 0.050
1 02-01-2019 98.5 31 0.0192 0.952 0.047
2 03-01-2019 99.0 33 0.0196 0.970 0.043
3 04-01-2019 99.5 32 0.0196 0.980 0.047
4 05-01-2019 97.0 31 0.0192 0.970 0.045
df2
Date Currency Amount_Dollar New_Amount_Dollar
0 01-01-2019 AUD 19298 0
1 02-01-2019 AUD 19210 0
2 03-01-2019 COP 5000 0
3 04-01-2019 CAD 200 0
4 05-01-2019 BND 2300 0
预期结果
Date Currency Amount_Dollar New_Amount_Dollar
0 01-01-2019 AUD 19298 1891204
1 02-01-2019 AUD 19210 1892185.0
2 03-01-2019 COP 5000 116279.06
3 04-01-2019 CAD 200 10204.08
4 05-01-2019 BND 2300 2371.13
答案 0 :(得分:3)
您想要lookup
和isin()
:
# this is to know where to multiply
# where to divide
s = df2['Currency'].isin(['AUD', 'BWP'])
# the values to multiply/divide
m = df1.set_index('Date').lookup(df2['Date'],df2['Currency'])
df2['New_Amount_Dollar'] = df2['Amount_Dollar'] * np.where(s, m, 1/m)
输出:
Date Currency Amount_Dollar New_Amount_Dollar
0 01-01-2019 AUD 19298 1891204.00
1 02-01-2019 AUD 19210 1892185.00
2 03-01-2019 COP 5000 116279.07
3 04-01-2019 CAD 200 10204.08
4 05-01-2019 BND 2300 2371.13
答案 1 :(得分:1)
尝试使用melt
和merge
:
df_out = df2.merge(df1.melt('Date', var_name='Currency'), on= ['Date','Currency'])
df_out['New_Amount_Dollar'] = (df_out['Amount_Dollar'] *
np.where(df_out['Currency'].isin(['AUD', 'BWP']),
df_out['value'],
1/df_out['value']))
print(df_out)
输出:
Date Currency Amount_Dollar New_Amount_Dollar value
0 01-01-2019 AUD 19298 1891204.000 98.000
1 02-01-2019 AUD 19210 1892185.000 98.500
2 03-01-2019 COP 5000 116279.070 0.043
3 04-01-2019 CAD 200 10204.082 0.020
4 05-01-2019 BND 2300 2371.134 0.970