如何使用Google AutoML Vision分类中的TensorFlow Frozen GraphDef(单个save_model.pb)进行推理和传输学习

时间:2019-11-06 16:52:34

标签: python tensorflow tensor transfer-learning google-cloud-automl

我正在使用Google AutoML Vision导出的分类模型,因此我只有saved_model.pb,没有变量,检查点等。 我想将此模型图加载到本地TensorFlow安装中,用于推理并继续训练更多图片。

主要问题:

  • 该计划是否可行,即使用不带变量,检查点等的单个saved_model.pb并使用新数据训练结果图?

  • 如果是:如何将图像编码为字符串的输入形状为(?,)

  • 理想情况下,展望未来:培训部分需要考虑什么重要事项?


有关代码的背景信息:

  • 要读取图像,我使用与使用Docker容器进行推理时使用的相同方法,因此使用base64编码的图像。

  • 要加载图形,我通过saved_model_cli show --dir input/model的CLI(serve)检查了图形需要设置的标记。

  • 要获取输入张量名称,我使用graph.get_operations(),它为 image_bytes 提供Placeholder:0,为 key提供Placeholder:1_0。 em>(只是一个任意字符串标识图像)。两者都具有维度dim -1

import tensorflow as tf
import numpy as np
import base64

path_img = "input/testimage.jpg"
path_mdl = "input/model"

# input to network expected to be base64 encoded image
with io.open(path_img, 'rb') as image_file:
    encoded_image = base64.b64encode(image_file.read()).decode('utf-8')

# reshaping to (1,) as the expecte dimension is (?,)
feed_dict_option1 = {
    "Placeholder:0": { np.array(str(encoded_image)).reshape(1,) }, 
    "Placeholder_1:0" : "image_key"
}

# reshaping to (1,1) as the expecte dimension is (?,)
feed_dict_option2 = {
    "Placeholder:0": np.array(str(encoded_image)).reshape(1,1), 
    "Placeholder_1:0" : "image_key"
}

with tf.Session(graph=tf.Graph()) as sess:
    tf.saved_model.loader.load(sess, ["serve"], path_mdl)

    graph = tf.get_default_graph()

    sess.run('scores:0',
               feed_dict=feed_dict_option1)

    sess.run('scores:0',
               feed_dict=feed_dict_option2)



输出:

# for input reshaped to (1,)
ValueError: Cannot feed value of shape (1,) for Tensor 'Placeholder:0', which has shape '(?,)'

# for input reshaped to (1,1)
ValueError: Cannot feed value of shape (1, 1) for Tensor 'Placeholder:0', which has shape '(?,)'

如何获得(?,)的输入形状?

非常感谢。

1 个答案:

答案 0 :(得分:3)

是的!可能我有一个应该相似的对象检测模型,我可以在tensorflow 1.14.0中按以下方式运行它:

import cv2
cv2.imread(filepath)
flag, bts = cv.imencode('.jpg', img)
inp = [bts[:,0].tobytes()]
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
                sess.graph.get_tensor_by_name('detection_scores:0'),
                sess.graph.get_tensor_by_name('detection_boxes:0'),
                sess.graph.get_tensor_by_name('detection_classes:0')],
               feed_dict={'encoded_image_string_tensor:0': inp})

我使用netron查找输入内容。

在tensorflow 2.0中甚至更容易:

import cv2
cv2.imread(filepath)
flag, bts = cv.imencode('.jpg', img)
inp = [bts[:,0].tobytes()]
saved_model_dir = '.'
loaded = tf.saved_model.load(export_dir=saved_model_dir)
infer = loaded.signatures["serving_default"]
out = infer(key=tf.constant('something_unique'), image_bytes=tf.constant(inp))

saved_model.pb也不是frozen_inference_graph.pb,请参见:What is difference frozen_inference_graph.pb and saved_model.pb?