具有推断功能的TensorFlow + Keras多GPU模型

时间:2019-05-25 23:32:59

标签: python tensorflow keras deep-learning classification

我正在尝试使用在此code之后建模的Keras的Xception模型进行图像分类。但是,我想使用多个GPU使用此function进行批处理并行图像分类。我相信这是有可能的,并且我的原始代码可以在没有多GPU支持的情况下工作,但是我无法使multi_gpu_model函数正常工作。对于多GPU示例,我正在关注此example。这是我的代码(它是Flask应用程序的后端),它实例化模型,在创建类时对示例ndarray进行预测,然后在classify函数中期望使用base 64编码的图像:

import os
from keras.preprocessing import image as preprocess_image
from keras.applications import Xception
from keras.applications.inception_v3 import preprocess_input, decode_predictions
from keras.utils import multi_gpu_model
import numpy as np
import tensorflow as tf
import PIL.Image
from numpy import array


class ModelManager:

    def __init__(self, model_path):
        self.model_name = 'ImageNet'
        self.model_version = '1.0'
        self.batch_size = 32
        height = 224
        width = 224
        num_classes = 1000
        # self.model = tf.keras.models.load_model(os.path.join(model_path, 'ImageNetXception.h5'))
        with tf.device('/cpu:0'):
            model = Xception(weights=None,
                             input_shape=(height, width, 3),
                             classes=num_classes, include_top=True)
            # Replicates the model on 8 GPUs.
        # This assumes that your machine has 8 available GPUs.
        self.parallel_model = multi_gpu_model(model, gpus=8)
        self.parallel_model.compile(loss='categorical_crossentropy',
                                    optimizer='rmsprop')

        print("Loaded Xception model.")
        x = np.empty((1, 224, 224, 3))
        self.parallel_model.predict(x, batch_size=self.batch_size)
        self.graph = tf.get_default_graph()
        self.graph.finalize()

    def classify(self, ids, images):
        results = []
        all_images = np.empty((0, 224, 224, 3))
        # all_images = []
        for image_id, image in zip(ids, images):
            # This does the same as keras.preprocessing.image.load_img
            image = image.convert('RGB')
            image = image.resize((224, 224), PIL.Image.NEAREST)

            x = preprocess_image.img_to_array(image)
            x = np.expand_dims(x, axis=0)
            x = preprocess_input(x)
            all_images = np.append(all_images, x, axis=0)
        # all_images.append(x)
        # a = array(all_images)
        # print(type(a))
        # print(a[0])

        with self.graph.as_default():
            preds = self.parallel_model.predict(all_images, batch_size=288)
        #print(type(preds))

        top3 = decode_predictions(preds, top=3)[0]
        print(top3)
        output = [((t[1],) + t[2:]) for t in top3]

        predictions = [
            {'label': label, 'probability': probability * 100.0}
            for label, probability in output
        ]

        results.append({
            'id': 1,
            'predictions': predictions
        })
        print(len(results))
        return results

我不确定的部分是什么传递预测函数。目前,我正在对要分类的图像创建一个ndarray,对它们进行预处理,然后将其传递给预测函数。函数返回,但是preds变量不符合我的期望。我尝试遍历preds对象,但是当我传递单个项目时会发生errordecode_predictions错误,但是当我传递整个preds ndarray时会做出一个预测。在示例代码中,它们不使用decode_predictions函数,因此我不确定如何将其与parallel_model.predict的响应一起使用。谢谢您的帮助或资源。

1 个答案:

答案 0 :(得分:0)

以下站点说明了如何正确执行此操作link