我有个土工。我想用csv表中的相应值替换栅格中的值。
栅格的类值为0到n,而csv具有栅格的每个n类的计算值(例如点密度)。 我想从csv中的相应值创建一个新的栅格
我正在使用GDAL和numpy。我尝试使用pandas,但是遇到了从csv到栅格pandas数据框提取值的问题。我将在相应的csv表的栅格列表上执行此操作。
下面是我的数据示例(一个栅格)
#Example raster array
[5 2 2 3
0 3 1 4
2 0 1 3]
#Corresponding csv table
Class Count Density
0 2 6
1 2 9
2 2 4
3 3 9
4 1 7
5 1 2
#Output Raster (to take the corresponding density values,
#i.e. if class = 0, then output raster = 6, the corresponding density value)
[2 4 4 9
6 9 9 7
4 6 9 9]
我有用于从栅格创建数组并从数组写回栅格的代码。我从各个stackexchange网站发现了它。 我不知道如何构造循环以从新栅格中的csv获取值。 我下面的“ for循环”代码不完整。 谁能帮忙
import numpy, sys
from osgeo import gdal
from osgeo.gdalconst import *
inRst = gdal.Open(r"c:/Raster1.tif")
band = inRst.GetRasterBand(1)
rows = inRst.RasterYSize
cols = inRst.RasterXSize
rstr_arry = band.ReadAsArray(0,0,cols,rows)
# create the output image
driver = inRst.GetDriver()
#print driver
outRst = driver.Create(r"c:/NewRstr.tif", cols, rows, 1, GDT_Int32)
outBand = outRst.GetRasterBand(1)
outData = numpy.zeros((rows,cols), numpy.int32)
for i in range(0, rows):
for j in range(0, cols):
if rstr_arry[i,j] = :
outData[i,j] =
elif rstr_arry[i,j] = :
outData[i,j] =
else:
outData[i,j] =
# write the data
outRst= outBand.WriteArray(outData, 0, 0)
# flush data to disk, set the NoData value and calculate stats
outBand.FlushCache()
outBand.SetNoDataValue(-99)
# georeference the image and set the projection
outDs.SetGeoTransform(inDs.GetGeoTransform())
outDs.SetProjection(inDs.GetProjection())
答案 0 :(得分:0)
如果我没记错要实现的目标,则首先必须阅读csv文件,并创建Class
值到Density
值的映射。可以这样完成:
import csv
mapping = {}
with open('test.csv') as csv_file:
csv_reader = csv.DictReader(csv_file)
for row in csv_reader:
mapping[int(row['Class'])] = int(row['Density'])
您将获得一个dict
:
{0: 6, 1: 9, 2: 4, 3: 9, 4: 7, 5: 2}
然后,您可以使用np.in1d
创建需要替换的掩码矩阵,并使用np.searchsorted
替换元素。在这样做之前,您将需要先平整栅格阵列,然后恢复其形状,然后再写回结果。
(替换numpy数组中的元素的替代方法可以在以下问题的答案中找到:Fast replacement of values in a numpy array)
# Save the shape of the raster array
s = rstr_arry.shape
# Flatten the raster array
rstr_arry = rstr_arry.reshape(-1)
# Create 2D replacement matrix:
replace = numpy.array([list(mapping.keys()), list(mapping.values())])
# Find elements that need replacement:
mask = numpy.in1d(rstr_arry, replace[0, :])
# Replace them:
rstr_arry[mask] = replace[1, numpy.searchsorted(replace[0, :], rstr_arry[mask])]
# Restore the shape of the raster array
rstr_arry = rstr_arry.reshape(s)
然后您可以按计划执行几乎数据:
outBand.WriteArray(rstr_arry, 0, 0)
outBand.SetNoDataValue(-99)
outDs.SetGeoTransform(inRst.GetGeoTransform())
outDs.SetProjection(inRst.GetProjection())
outBand.FlushCache()
在示例数据上对其进行测试:
rstr_arry = np.asarray([
[5, 2, 2, 3],
[0, 3, 1, 4],
[2, 0, 1, 3]])
mapping = {0: 6, 1: 9, 2: 4, 3: 9, 4: 7, 5: 2}
s = rstr_arry.shape
rstr_arry = rstr_arry.reshape(-1)
replace = numpy.array([list(mapping.keys()), list(mapping.values())])
mask = numpy.in1d(rstr_arry, replace[0, :])
rstr_arry[mask] = replace[1, numpy.searchsorted(replace[0, :], rstr_arry[mask])]
rstr_arry = rstr_arry.reshape(s)
print(rstr_arry)
# [[2 4 4 9]
# [6 9 9 7]
# [4 6 9 9]]