为什么在此列表理解中调用np.array()会生成3d数组而不是2d?

时间:2019-11-05 05:48:28

标签: python numpy

我有一个脚本,将给定的一组输入值乘以Markov矩阵的前几个迭代。矩阵存储为A,起始值存储在列u0中,我使用此列表推导将输出存储在数组中:

out = np.array([ ( (A**n) * u0).T for n in range(10) ])

输出的形状为(10,1,6),但我希望输出的形状为(10,6)。显然,我可以使用.reshape()来解决此问题,但是有没有一种方法可以避免通过首先简化列表理解或输入来创建额外的维度?

完整的脚本和输出如下:

import numpy as np

# Random 6x6 Markov matrix
n = 6
A = np.matrix([ (lambda x: x/x.sum())(np.random.rand(n)) for _ in range(n)]).T
print(A)

#[[0.27457312 0.20195133 0.14400801 0.00814027 0.06026188 0.23540134]
# [0.21526648 0.17900277 0.35145882 0.30817386 0.15703758 0.21069114]
# [0.02100412 0.05916883 0.18309142 0.02149681 0.22214047 0.15257011]
# [0.17032696 0.11144443 0.01364982 0.31337906 0.25752732 0.1037133 ]
# [0.03081507 0.2343255  0.2902935  0.02720764 0.00895182 0.21920371]
# [0.28801424 0.21410713 0.01749843 0.32160236 0.29408092 0.07842041]]

# Random start values
u0 = np.matrix(np.random.randint(51, size=n)).T
print(u0)

#[[31]
# [49]
# [44]
# [29]
# [10]
# [ 0]]

# Find the first 10 iterations of the Markov process
out = np.array([ ( (A**n) * u0).T for n in range(10) ])
print(out)

#[[[31.         49.         44.         29.         10.
#    0.        ]]
#
# [[25.58242101 41.41600236 14.45123543 23.00477134 26.08867045
#   32.45689942]]
#
# [[26.86917065 36.02438292 16.87560159 26.46418685 22.66236879
#   34.10428921]]
#
# [[26.69224394 37.06346073 16.59208202 26.48817955 22.56696872
#   33.59706504]]
#
# [[26.68772374 36.99727159 16.49987315 26.5003184  22.61130862
#   33.7035045 ]]
#
# [[26.68766363 36.98517264 16.50532933 26.51717543 22.592951
#   33.71170797]]
#
# [[26.68695152 36.98895204 16.50314718 26.51729716 22.59379049
#   33.70986161]]
#
# [[26.68682195 36.98848867 16.50286371 26.51763013 22.59362679
#   33.71056876]]
#
# [[26.68681128 36.98850409 16.50286036 26.51768807 22.59359453
#   33.71054167]]
#
# [[26.68680313 36.98851046 16.50285038 26.51769497 22.59359219
#   33.71054886]]]

print(out.shape)

#(10, 1, 6)

out = out.reshape(10,n)
print(out)

#[[31.         49.         44.         29.         10.          0.        ]
# [25.58242101 41.41600236 14.45123543 23.00477134 26.08867045 32.45689942]
# [26.86917065 36.02438292 16.87560159 26.46418685 22.66236879 34.10428921]
# [26.69224394 37.06346073 16.59208202 26.48817955 22.56696872 33.59706504]
# [26.68772374 36.99727159 16.49987315 26.5003184  22.61130862 33.7035045 ]
# [26.68766363 36.98517264 16.50532933 26.51717543 22.592951   33.71170797]
# [26.68695152 36.98895204 16.50314718 26.51729716 22.59379049 33.70986161]
# [26.68682195 36.98848867 16.50286371 26.51763013 22.59362679 33.71056876]
# [26.68681128 36.98850409 16.50286036 26.51768807 22.59359453 33.71054167]
# [26.68680313 36.98851046 16.50285038 26.51769497 22.59359219 33.71054886]]

3 个答案:

答案 0 :(得分:1)

我认为您的困惑在于如何连接数组。

从一个简单的一维数组开始(在numpy中,一维是真实的东西,而不仅仅是“行向量”或“列向量”):

In [288]: arr = np.arange(6)                                                    
In [289]: arr                                                                   
Out[289]: array([0, 1, 2, 3, 4, 5])

np.array沿新的第1维连接元素数组:

In [290]: np.array([arr,arr])                                                   
Out[290]: 
array([[0, 1, 2, 3, 4, 5],
       [0, 1, 2, 3, 4, 5]])
具有默认轴值的

np.stack会执行相同的操作。阅读其文档。

我们可以制作一个二维数组,一个列向量:

In [291]: arr1 = arr[:,None]                                                    
In [292]: arr1                                                                  
Out[292]: 
array([[0],
       [1],
       [2],
       [3],
       [4],
       [5]])
In [293]: arr1.shape                                                            
Out[293]: (6, 1)

在转置(1,6)数组上使用np.array

In [294]: np.array([arr1.T, arr1.T])                                            
Out[294]: 
array([[[0, 1, 2, 3, 4, 5]],

       [[0, 1, 2, 3, 4, 5]]])
In [295]: _.shape                                                               
Out[295]: (2, 1, 6)

请注意打扰您的1号中间尺寸。

np.vstack沿现有的第1维合并数组。它不添加一个:

In [296]: np.vstack([arr1.T, arr1.T])                                           
Out[296]: 
array([[0, 1, 2, 3, 4, 5],
       [0, 1, 2, 3, 4, 5]])

或者我们可以在第二维上水平合并数组:

In [297]: np.hstack([arr1, arr1])                                               
Out[297]: 
array([[0, 0],
       [1, 1],
       [2, 2],
       [3, 3],
       [4, 4],
       [5, 5]])

即(6,2)可以转换为(2,6):

In [298]: np.hstack([arr1, arr1]).T                                             
Out[298]: 
array([[0, 1, 2, 3, 4, 5],
       [0, 1, 2, 3, 4, 5]])

答案 1 :(得分:0)

如果将np.array()用于输入,将@用于矩阵乘法,则可以按预期工作。

# Random 6x6 Markov matrix
n = 6
A = np.array([ (lambda x: x/x.sum())(np.random.rand(n)) for _ in range(n)]).T

# Random start values
u0 = np.random.randint(51, size=n).T

# Find the first 10 iterations of the Markov process
out = np.array([ ( np.linalg.matrix_power(A,n) @ u0).T for n in range(10) ])
print(out)

#[[29.         24.          5.         12.         10.         32.        ]
# [15.82875119 13.53436868 20.61648725 19.22478172 20.34082205 22.45478912]
# [21.82434718 10.06037119 14.29281935 20.75271393 18.76134538 26.30840297]
# [20.77484848 10.1379821  15.47488423 19.4965479  20.05618311 26.05955418]
# [21.02944236 10.09401438 15.24263478 19.48662616 19.95767996 26.18960236]
# [20.96887722 10.11647819 15.30729334 19.44261102 20.00089222 26.16384802]
# [20.98086362 10.11522779 15.29529799 19.44899285 19.99137187 26.16824587]
# [20.97795615 10.11606978 15.29817734 19.44798612 19.99293494 26.16687566]
# [20.97858032 10.11591954 15.29752865 19.44839852 19.99245389 26.16711909]
# [20.97844343 10.11594666 15.29766432 19.4483417  19.99254284 26.16706104]]

答案 2 :(得分:0)

我对代码进行了一些更改,尽管我不能100%地确定结果仍然相同(我对Markov链不熟悉)。

import numpy as np

n = 6

num_proc_iters = 10

rand_nums_arr = np.random.random_sample((n, n))
rand_nums_arr = np.transpose(rand_nums_arr / rand_nums_arr.sum(axis=1))

u0 = np.random.randint(51, size=n)

res_arr = np.concatenate([np.linalg.matrix_power(rand_nums_arr, curr) @ u0 for curr in range(num_proc_iters)])

我很想听听是否有人可以想到任何进一步的改进。