我想将JSON转换为Pandas数据框。
我的JSON看起来像: 喜欢:
{
"country1":{
"AdUnit1":{
"floor_price1":{
"feature1":1111,
"feature2":1112
},
"floor_price2":{
"feature1":1121
}
},
"AdUnit2":{
"floor_price1":{
"feature1":1211
},
"floor_price2":{
"feature1":1221
}
}
},
"country2":{
"AdUnit1":{
"floor_price1":{
"feature1":2111,
"feature2":2112
}
}
}
}
我使用以下代码从GCP中读取了文件:
project = Context.default().project_id
sample_bucket_name = 'my_bucket'
sample_bucket_path = 'gs://' + sample_bucket_name
print('Object: ' + sample_bucket_path + '/json_output.json')
sample_bucket = storage.Bucket(sample_bucket_name)
sample_bucket.create()
sample_bucket.exists()
sample_object = sample_bucket.object('json_output.json')
list(sample_bucket.objects())
json = sample_object.read_stream()
我的目标是获得如下所示的Pandas数据框:
我尝试使用json_normalize,但没有成功。
答案 0 :(得分:4)
嵌套JSON总是很难正确处理。
几个月前,我想出了一种使用here中写得很漂亮的 flatten_json_iterative_solution 来提供“通用答案”的方法:每个方法都反复进行解压缩给定json的级别。
然后可以将其简单地转换为 Pandas.Series 然后是 Pandas.DataFrame ,如下所示:
df = pd.Series(flatten_json_iterative_solution(dict(json_))).to_frame().reset_index()
可以轻松地执行某些数据转换以将索引拆分为您要求的列名称:
df[["index", "col1", "col2", "col3", "col4"]] = df['index'].apply(lambda x: pd.Series(x.split('_')))
答案 1 :(得分:1)
您可以使用此:
def flatten_dict(d):
""" Returns list of lists from given dictionary """
l = []
for k, v in sorted(d.items()):
if isinstance(v, dict):
flatten_v = flatten_dict(v)
for my_l in reversed(flatten_v):
my_l.insert(0, k)
l.extend(flatten_v)
elif isinstance(v, list):
for l_val in v:
l.append([k, l_val])
else:
l.append([k, v])
return l
此函数接收字典(包括值也可以是列表的嵌套)并将其展平为列表。
然后,您可以简单地:
df = pd.DataFrame(flatten_dict(my_dict))
my_dict
是您的JSON对象。
以您的示例为例,运行print(df)
时得到的是:
0 1 2 3 4
0 country1 AdUnit1 floor_price1 feature1 1111
1 country1 AdUnit1 floor_price1 feature2 1112
2 country1 AdUnit1 floor_price2 feature1 1121
3 country1 AdUnit2 floor_price1 feature1 1211
4 country1 AdUnit2 floor_price2 feature1 1221
5 country2 AdUnit1 floor_price1 feature1 2111
6 country2 AdUnit1 floor_price1 feature2 2112
在创建数据框时,您可以命名列和索引
答案 2 :(得分:1)
您可以尝试这种方法:
from google.cloud import storage
import pandas as pd
storage_client = storage.Client()
bucket = storage_client.get_bucket('test-mvladoi')
blob = bucket.blob('file')
read_output = blob.download_as_string()
data = json.loads(read_output)
data_norm = json_normalize(data, max_level=5)
df = pd.DataFrame(columns=['col1', 'col2', 'col3', 'col4', 'col5'])
i = 0
for col in b.columns:
a,c,d,e = col.split('.')
df.loc[i] = [a,c,d,e,b[col][0]]
i = i + 1
print(df)
答案 3 :(得分:0)
不是最好的方法,但是它是有效的。另外,您应该修改仅从此awnser
中选取的展平函数test = {
"country1":{
"AdUnit1":{
"floor_price1":{
"feature1":1111,
"feature2":1112
},
"floor_price2":{
"feature1":1121
}
},
"AdUnit2":{
"floor_price1":{
"feature1":1211
},
"floor_price2":{
"feature1":1221
}
}
},
"country2":{
"AdUnit1":{
"floor_price1":{
"feature1":2111,
"feature2":2112
}
}
}
}
from collections import defaultdict
import pandas as pd
import collections
def flatten(d, parent_key='', sep='_'):
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.MutableMapping):
items.extend(flatten(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
results = defaultdict(list)
colnames = ["col1", "col2", "col3", "col4", "col5", "col6"]
for key, value in flatten(test).items():
elements = key.split("_")
elements.append(value)
for colname, element in zip(colnames, elements):
results[colname].append(element)
df = pd.DataFrame(results)
print(df)