我有一个贝叶斯空间层次模型,可以对四种犯罪类型的犯罪计数进行建模。在运行MCMC时,我刻录了10,000次迭代,然后每进行10次迭代就进行精简,以改善检查收敛性诊断时的自相关图。
我的目标是保留10000个细化迭代以获取后验估计。 但是,经过7700次迭代后,出现此错误,我不知道如何解决。我尝试更改初始值(甚至为向量中的每个元素指定了不同的值),但是仿真在7700次迭代后仍然停止。
代码:
model {
for (i in 1:N) { ### areas (1, 2,…, 67)
for (k in 1:K) { ### types (1, 2,..., 4)
y[i,k] ~ dpois(mu[i,k])
### centering parameterization of log(mu[i,k])
log(mu[i,k]) <- log.rates[i,k]
log.rates[i,k] ~ dnorm(theta[i,k], tau[k])
theta[i,k] <- alpha[k] + (lambda[k] * f[i]) + s[k,i]}}
### set weights for ICAR prior
for (j in 1:sumNumNeigh) { weights[j] <- 1 }
### shared component for all crimes
f[1:N] ~ car.normal(adj[], weights[], num[], 1) ### random effects for shared component
for (k in 1:K) { ### scaling parameters for shared component
loglambda[k] ~ dnorm(0, 5.9)
loglambda.c[k] <- loglambda[k] - loglambda.mean
lambda[k] <- exp(loglambda.c[k])
}
loglambda.mean <- mean(loglambda[1:K])
### type-specific spatial random effects
for (k in 1:K) {
s[k,1:N] ~ car.normal(adj[], weights[], num[], tau_s[k])
}
### recover type-specific unstructured random effects
for (i in 1:N) {
for (k in 1:K) {
u[i,k] <- log.rates[i,k] - theta[i,k]
}
}
for (k in 1:K) {
alpha[k] ~ dflat()
sigma_s[k] ~ dunif(0, 100)
sigma[k] ~ dunif(0, 100)
tau_s[k] <- pow(sigma_s[k],-2)
tau[k] <- pow(sigma[k], -2)
}
}
}
错误信息示例:
undefined real result
SpatialCARNormal.Node.Likelihood [0000060CH]
.logLikelihood REAL 1.762991566369145E-311
.logTau REAL inf
.node SpatialCARNormal.Node [04DDDBF0H]
.p0 REAL 266.5
.p1 REAL 1.149804409577816E-301
.tau REAL inf
.x GraphNodes.Node [5F4E6750H]
UpdaterSlice.Updater.Conditional [000000A6H]
.cond REAL 0.0
.linearCoef REAL 0.0
.list GraphStochastic.List [301C6630H]
.node GraphStochastic.Node [04DDDBF0H]
.prior GraphStochastic.Node [04DD4670H]
.quadCoef REAL 0.0
.updater UpdaterSlice.Updater [30992560H]
.x REAL 2.265196125639775E-155