在WinBUGS中从MD切换到SMD会产生未定义的实际陷阱错误

时间:2017-09-13 10:02:11

标签: r winbugs r2winbugs

第一次在这里发帖,所以我希望我能够勾选所有需要的方框。我正在使用NICE技术支持文档通过R和R2WinBUGS提供的代码运行网络元分析。模型使用均值差异很好,但是当我转换为对冲G时,我突然得到一个未定义的真实误差,这似乎是非正定的协方差矩阵的结果。我确定我错过了一些明显的东西,但我会感激任何可能的帮助。请参阅下面的代码。

library(R2WinBUGS)


re_normal_gaus <- function()                                 # this code for this model was adapted from WinBUGS code from the multi-parameter Evidence Synthesis Research Group at the University of Bristol:  Website: www.bris.ac.uk/cobm/research/mpes                  
{                               
  for(i in 1:ns2) { # LOOP THROUGH 2-ARM STUDIES                                
    y[i,2] ~ dnorm(delta[i,2],prec[i,2]) # normal likelihood for 2-arm trials                               
    resdev[i] <- (y[i,2]-delta[i,2])*(y[i,2]-delta[i,2])*prec[i,2] #Deviance contribution for trial i                               
  }                             
  for(i in (ns2+1):(ns2+ns3)) { # LOOP THROUGH 3-ARM STUDIES                                
    for (k in 1:(na[i]-1)) { # set variance-covariance matrix                               
      for (j in 1:(na[i]-1)) { Sigma[i,j,k] <- V[i]*(1-equals(j,k)) + var[i,k+1]*equals(j,k) }                              
    }                               
    Omega[i,1:(na[i]-1),1:(na[i]-1)] <- inverse(Sigma[i,,]) #Precision matrix                               
    # multivariate normal likelihood for 3-arm trials                               
    y[i,2:na[i]] ~ dmnorm(delta[i,2:na[i]],Omega[i,1:(na[i]-1),1:(na[i]-1)])                                
    #Deviance contribution for trial i                              
    for (k in 1:(na[i]-1)){ # multiply vector & matrix                              
      ydiff[i,k]<- y[i,(k+1)] - delta[i,(k+1)]                              
      z[i,k]<- inprod2(Omega[i,k,1:(na[i]-1)], ydiff[i,1:(na[i]-1)])                                
    }                               
    resdev[i]<- inprod2(ydiff[i,1:(na[i]-1)], z[i,1:(na[i]-1)])                             
  }     

  for(i in (ns2+ns3+1):(ns2+ns3+ns4)) { # LOOP THROUGH 4-ARM STUDIES                                
    for (k in 1:(na[i]-1)) { # set variance-covariance matrix                               
      for (j in 1:(na[i]-1)) { Sigma2[i,j,k] <- V[i]*(1-equals(j,k)) + var[i,k+1]*equals(j,k) }                             
    }                               
    Omega2[i,1:(na[i]-1),1:(na[i]-1)] <- inverse(Sigma2[i,,]) #Precision matrix                             
    # multivariate normal likelihood for 4-arm trials                               
    y[i,2:na[i]] ~ dmnorm(delta[i,2:na[i]],Omega2[i,1:(na[i]-1),1:(na[i]-1)])                               
    #Deviance contribution for trial i                              
    for (k in 1:(na[i]-1)){ # multiply vector & matrix                              
      ydiff[i,k]<- y[i,(k+1)] - delta[i,(k+1)]                              
      z[i,k]<- inprod2(Omega2[i,k,1:(na[i]-1)], ydiff[i,1:(na[i]-1)])                               
    }                               
    resdev[i]<- inprod2(ydiff[i,1:(na[i]-1)], z[i,1:(na[i]-1)])                             
  }



  for(i in 1:(ns2+ns3+ns4)){ # LOOP THROUGH ALL STUDIES                             
    w[i,1] <- 0 # adjustment for multi-arm trials is zero for control arm                               
    delta[i,1] <- 0 # treatment effect is zero for control arm                              
    for (k in 2:na[i]) { # LOOP THROUGH ARMS                                
      var[i,k] <- pow(se[i,k],2) # calculate variances                              
      prec[i,k] <- 1/var[i,k] # set precisions                              
      dev[i,k] <- (y[i,k]-delta[i,k])*(y[i,k]-delta[i,k])*prec[i,k]                             
    }                               
    #resdev[i] <- sum(dev[i,2:na[i]]) # summed residual deviance contribution for this trial                                
    for (k in 2:na[i]) { # LOOP THROUGH ARMS                                
      delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific treat effects distributions                                
      md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of treat effects distributions (with multi-arm trial correction)                                
      taud[i,k] <- tau *2*(k-1)/k # precision of treat effects distributions (with multi-arm trial correction)                              
      w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) # adjustment for multi-arm RCTs                                
      sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials                             
    }                               
  }                             
  totresdev <- sum(resdev[]) #Total Residual Deviance                               
  d[1]<-0 # treatment effect is zero for reference treatment                                
  for (k in 2:nt){ d[k] ~ dnorm(0,.0001) } # vague priors for treatment effects                             
  sd ~ dunif(0,5) # vague prior for between-trial SD                                
  tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance)                              
  #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                
  # Extra code for all mean differences, rankings                               
  #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                

  # pairwise mean differences for all possible pair-wise comparisons, if nt>2                               
  for (c in 1:(nt-1)) {                             
    for (k in (c+1):nt) {                               
      meandif[c,k] <- (d[k] - d[c])
      # pairwise comparison between all treatments
      better[c,k]  <- 1 - step(d[k] - d[c])

    }                               
  }                             
  # ranking calculations                                
  for (k in 1:nt) {
    # assumes differences<0 favor the comparator   ===> number of elements in d[] that are less than or equal to d[k]                   
    rk[k] <- rank(d[],k)            

    #calculate probability that treat k is best     ===> k is the best treatment if rk[k] = 1
    best[k] <- equals(rk[k],1)

    for(h in 1:nt) {                                
      prob[k,h]<- equals(rk[k],h)               
    }                               
  }                             
  for(k in 1:nt) {                              
    for(h in 1:nt) {                                
      cumeffectiveness[k,h]<- sum(prob[k,1:h])                              
    }                               
  }                             
  #SUCRAS#                              
  for(i in 1:nt) {                              
    SUCRA[i]<- sum(cumeffectiveness[i,1:(nt-1)]) /(nt-1)                                
  }
}                                                           # END Program                           


write.model(re_normal_gaus, "re-normal-gaus.txt")
MODELFILE.re <- c("re-normal-gaus.txt")






md = read.table(textConnection("t_1 t_2 t_3 t_4 y_2 y_3 y_4 se_2    se_3    se_4    V   na
1   5   NA  NA  1.6 NA  NA  1.7801767   NA  NA  1.381371651 2
                               1    8   NA  NA  -0.2    NA  NA  0.365808405 NA  NA  0.075789474 2
                               2    3   NA  NA  2.7 NA  NA  0.48894018  NA  NA  0.1378125   2
                               1    4   NA  NA  -2.2    NA  NA  1.255423019 NA  NA  0.695652174 2
                               2    3   NA  NA  0   NA  NA  1.060660172 NA  NA  0.5625  2
                               2    3   NA  NA  2.7 NA  NA  0.555150008 NA  NA  0.154285714 2
                               1    7   NA  NA  -2  NA  NA  0.441189176 NA  NA  0.039192632 2
                               1    2   NA  NA  -0.5    NA  NA  0.970562384 NA  NA  0.457142857 2
                               4    9   NA  NA  0.1 NA  NA  0.807757815 NA  NA  0.188072678 2
                               1    5   NA  NA  2.5 NA  NA  1.011075035 NA  NA  0.465454545 2
                               2    3   NA  NA  2.6 NA  NA  0.921954446 NA  NA  0.49    2
                               1    10  NA  NA  -1.3    NA  NA  0.850881895 NA  NA  0.4 2
                               2    3   NA  NA  2.6125  NA  NA  0.439282085 NA  NA  0.14546875  2
                               1    4   NA  NA  2   NA  NA  1.306118643 NA  NA  0.989117513 2
                               1    6   NA  NA  -2.6    NA  NA  0.550381686 NA  NA  0.15842 2
                               1    4   NA  NA  -3.2    NA  NA  0.194924242 NA  NA  0.0162  2
                               1    2   NA  NA  -3.6    NA  NA  0.380131556 NA  NA  0.07225 2
                               5    11  12  NA  -2.4    -2.2    NA  0.79304967  0.848808689 NA  0.347142857 3
                               1    4   7   NA  -4.7    -0.8    NA  0.420823389 0.45845681  NA  0.065641026 3
                               2    3   6   NA  0.3 0.48    NA  0.584636639 0.703153611 NA  0.20402 3
                               1    2   3   4   -3.2    -3  -1  1.219830171 1.113092025 0.785493475 0.361   4
                               "),header = T)


smd = read.table(textConnection("t_1    t_2 t_3 t_4 y_2 y_3 y_4 se_2    se_3    se_4    V   na
1   5   NA  NA  0.284314186 NA  NA  0.387759426 NA  NA  NA  2
                          1 8   NA  NA  -0.088247814    NA  NA  0.424250037 NA  NA  NA  2
                          2 3   NA  NA  1.363769324 NA  NA  0.621067031 NA  NA  NA  2
                          1 4   NA  NA  -0.507895157    NA  NA  0.404635828 NA  NA  NA  2
                          2 3   NA  NA  0   NA  NA  0.702664963 NA  NA  NA  2
                          2 3   NA  NA  1.5093214   NA  NA  0.91184626  NA  NA  NA  2
                          1 7   NA  NA  -0.843577542    NA  NA  0.461709287 NA  NA  NA  2
                          1 2   NA  NA  -0.123574144    NA  NA  0.383877128 NA  NA  NA  2
                          4 9   NA  NA  0.038564349 NA  NA  0.495157679 NA  NA  NA  2
                          1 5   NA  NA  0.732129077 NA  NA  0.451400734 NA  NA  NA  2
                          2 3   NA  NA  1.001922271 NA  NA  0.553706463 NA  NA  NA  2
                          1 10  NA  NA  -0.654394486    NA  NA  1.502905599 NA  NA  NA  2
                          2 3   NA  NA  1.843306589 NA  NA  1.078204274 NA  NA  NA  2
                          1 4   NA  NA  0.553077868 NA  NA  0.428210865 NA  NA  NA  2
                          1 6   NA  NA  -1.464178893    NA  NA  1.155770916 NA  NA  NA  2
                          1 4   NA  NA  -3.346020348    NA  NA  1.497631686 NA  NA  NA  2
                          1 2   NA  NA  -2.097219595    NA  NA  0.613586425 NA  NA  NA  2
                          5 11  12  NA  -0.906267636    -0.784775956    NA  0.535679681 0.518303517 NA  0.347142857 3
                          1 4   7   NA  -2.488768168    -0.386547304    NA  0.734950178 0.595461098 NA  0.065641026 3
                          2 3   6   NA  0.15904499  0.211580576 NA  1.013288527 0.858087687 NA  0.20402 3
                          1 2   3   4   -1.100360888    -1.182907814    -0.545284283    1.059726917 1.270240674 1.588768054 0.361   4
                          "),header = T)


treatments = read.table(textConnection("description t
A   1
                                       B    2
                                       C    3
                                       D    4
                                       E    5
                                       F    6
                                       G    7
                                       H    8
                                       I    9
                                       J    10
                                       K    11
                                       L    12
                                       "),header = T)


t = as.matrix(md[1:4])

# number of treatments
nt = length(treatments[[1]])

y = as.matrix(cbind(rep(NA, length(t[,1])), md[5:7]))

se = as.matrix(cbind(rep(NA, length(t[,1])), md[8:10]))

na = as.vector(md[,12])

V = as.vector(md[,11])

ns2 = length(subset(na, na==2))
ns3 = length(subset(na, na==3))
ns4 = length(subset(na, na==4))

data_md = list(nt=nt, ns2=ns2, ns3=ns3, ns4=ns4,t=t, y=y, se=se, na=na, V=V)



y_smd = as.matrix(cbind(rep(NA, length(t[,1])), smd[5:7]))

se_smd = as.matrix(cbind(rep(NA, length(t[,1])), smd[8:10]))


data_smd = list(nt=nt, ns2=ns2, ns3=ns3, ns4=ns4,t=t, y=y_smd, se=se_smd, na=na, V=V)

params = c("meandif", 'SUCRA', 'best', 'totresdev', 'rk', 'dev', 'resdev', 'prob', "better","sd")

bugs(data_md, NULL, params, model.file= MODELFILE.re,
     n.chains = 3, n.iter = 40000, n.burnin = 20000, n.thin=1, 
     bugs.directory = bugsdir, debug=F)


bugs(data_smd, NULL, params, model.file= MODELFILE.re,
     n.chains = 3, n.iter = 40000, n.burnin = 20000, n.thin=1, 
     bugs.directory = bugsdir, debug=F)

1 个答案:

答案 0 :(得分:0)

在与原始代码的作者交谈后,我了解到问题在于我如何为SMD计算V. md的协方差只是控制臂的变化,但对于smd,它是控制臂中样本大小的倒数。一旦计算得当,我的矩阵表现得很好。

来源:http://methods.cochrane.org/sites/methods.cochrane.org.cmi/files/public/uploads/S8-L%20Problems%20introduced%20by%20multi-arm%20trials%20-%20full%20network%20meta-analysis.pdf