在给定转移矩阵的情况下,将转移有效地应用于状态矩阵

时间:2019-11-01 21:15:54

标签: python numpy transition numba

我希望将状态更改应用于具有k个类别的大型分类矩阵(M),其中我知道k(T)中每个类别到另一个类别的转换概率

基本上,我希望能够有效地获取M中的每个元素,根据T中的概率模拟状态变化,并使用计算出的变化替换该元素。

我尝试了一些解决方案:

  • 强力嵌套在带有索引的循环中(太长了)
  • numba辅助嵌套循环(约500毫秒,对于我而言太长了)
  • 每个类别和替换的预计算抽奖(〜400ms)
import numpy as np


def categorical_transition(mat, t_mat, k=4):

    transformed_mat = mat.copy()
    cat_counts = np.bincount(mat.reshape(-1,))

    for i in range(k):
        rand_vec = np.random.multinomial(1, t_mat[i], cat_counts[i])

        choice = np.where(rand_vec)[1]

        transformed_mat[mat == i] = choice

    return transformed_mat


# load data
mat = np.random.choice(4, (16000, 256))
t_mat = np.random.random((4, 4))

# normalize transition matrix
for i in range(t_mat.shape[0]):
    t_mat[i] = t_mat[i] / t_mat[i].sum()

transformed_mat = categorical_transition(mat, t_mat)

此方法有效,但速度较慢,我希望您能以更有效的方式提出建议

2 个答案:

答案 0 :(得分:1)

始终提供您到目前为止尝试过的所有实施方式

例如,我尝试了一种简单的实现,描述为here.,具体取决于您有多少个内核,它应该比解决方案快20-80倍。

实施

@nb.njit(parallel=True)  
def categorical_transition_nb(mat_in, t_mat):
    mat=np.reshape(mat_in,-1)
    transformed_mat = np.empty_like(mat)
    for i in nb.prange(mat.shape[0]):
        rand_number=np.random.rand()
        probabilities=t_mat[mat[i],:]
        if rand_number<probabilities[0]:
            transformed_mat[i]=0
        else:
            for j in range(1,probabilities.shape[0]):
                if rand_number>=probabilities[j-1] and rand_number<probabilities[j]:
                    transformed_mat[i]=j

    return transformed_mat.reshape(mat_in.shape)

时间

import numpy as np
import numba as nb

# load data
mat = np.random.choice(4, (16_000,256))
t_mat = np.random.random((4, 4))

# normalize transition matrix
for i in range(t_mat.shape[0]):
    t_mat[i] = t_mat[i] / t_mat[i].sum()

t_mat_2=np.cumsum(t_mat,axis=1)
%timeit transformed_mat_2 = categorical_transition_nb(mat, t_mat_2)
21.7 ms ± 1.85 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

答案 1 :(得分:0)

这是一种使示例速度提高5倍的方法

context!!

样品运行:

import numpy as np

def categorical_transition(mat, t_mat, k=4):

    transformed_mat = mat.copy()
    cat_counts = np.bincount(mat.reshape(-1,))

    for i in range(k):
        rand_vec = np.random.multinomial(1, t_mat[i], cat_counts[i])

        choice = np.where(rand_vec)[1]

        transformed_mat[mat == i] = choice

    return transformed_mat

def pp(mat,t_mat):
    ps = t_mat.cumsum(1)
    ps /= ps[:,-1:]
    return (np.random.random(mat.shape+(1,))<ps[mat]).argmax(-1)


# load data
mat = np.random.choice(4, (16000, 256))
t_mat = np.random.random((4, 4))

# normalize transition matrix
for i in range(t_mat.shape[0]):
    t_mat[i] = t_mat[i] / t_mat[i].sum()

transformed_mat = categorical_transition(mat, t_mat)
transformed_mat_pp = pp(mat, t_mat)

# check correctness
from pprint import pprint
np.set_printoptions(3)

cnts = np.bincount(mat.ravel())
pprint([[np.bincount(tm[mat==i])/cnts[i] for tm in (transformed_mat,transformed_mat_pp)] + [t_mat[i]] for i in range(4)])

from timeit import timeit

print('OP',timeit(lambda:categorical_transition(mat, t_mat),number=10)*100,'ms')
print('pp',timeit(lambda:pp(mat, t_mat),number=10)*100,'ms')