我有一个如下所示的数据框:
Flag1 Flag2 Type1 Type2 Type3
1 A FIRST 2 0 0
2 A SECOND 1 9 0
3 A THIRD 3 7 0
4 A FOURTH 9 18 0
5 A FIFTH 1 22 0
6 A SIXTH 1 13 0
7 B FIRST 0 0 0
8 B SECOND 3 9 0
9 B THIRD 5 85 0
10 B FOURTH 4 96 0
11 B FIFTH 3 40 0
12 B SIXTH 0 17 0
我需要总结一下,我的数据框最终看起来像这个
Flag1 Flag2 Type1 Type2 Type3 Sum
1 A FIRST 2 0 0 2
2 A SECOND 1 9 0 10
3 A THIRD 3 7 0 10
4 A FOURTH 9 18 0 27
5 A FIFTH 1 22 0 23
6 A SIXTH 1 13 0 14
7 B FIRST 0 0 0 0
8 B SECOND 3 9 0 12
9 B THIRD 5 85 0 90
10 B FOURTH 4 96 0 100
11 B FIFTH 3 40 0 43
12 B SIXTH 0 17 0 17
13 (all) FIRST 2 0 0 2
14 (all) SECOND 4 18 0 22
15 (all) THIRD 8 92 0 100
16 (all) FOURTH 13 114 0 127
17 (all) FIFTH 4 62 0 66
18 (all) SIXTH 1 30 0 31
19 A (all) 17 68 0 86
20 B (all) 15 247 0 262
21 (all) (all) 32 315 0 348
我在reshape2包中尝试过add_margins函数,没有用,它不像我想要的那样计算总和。我尝试过聚合,rowSums& colSums - 没有结果。
这里的任何帮助都会很棒。
由于
求和函数也需要添加前一个Flag2的和。像,
Flag1 Flag2 Type1 Type2 Type3 Sum
1 A FIRST 2 0 0 2
2 A SECOND 1 9 0 12
3 A THIRD 3 7 0 22
4 A FOURTH 9 18 0 49
5 A FIFTH 1 22 0 72
6 A SIXTH 1 13 0 86
7 B FIRST 0 0 0 0
8 B SECOND 3 9 0 12
9 B THIRD 5 85 0 102
10 B FOURTH 4 96 0 202
11 B FIFTH 3 40 0 245
12 B SIXTH 0 17 0 262
13 (all) FIRST 2 0 0 2
14 (all) SECOND 4 18 0 24
15 (all) THIRD 8 92 0 124
16 (all) FOURTH 13 114 0 251
17 (all) FIFTH 4 62 0 317
18 (all) SIXTH 1 30 0 348
19 A (all) 17 68 0 85
20 B (all) 15 247 0 262
21 (all) (all) 32 315 0 347
答案 0 :(得分:5)
假设您有这样的数据,框架及其名称是dtable:
dt1 <- as.data.frame(addmargins(xtabs(Type1~Flag1+Flag2, data=dtable)))
dt2 <- as.data.frame(addmargins(xtabs(Type2~Flag1+Flag2, data=dtable)))
dt3 <- as.data.frame(addmargins(xtabs(Type3~Flag1+Flag2, data=dtable)))
names(dt1)[3] <- "Type1"
names(dt2)[3] <- "Type2"
names(dt3)[3] <- "Type3"
dt.all <- merge(merge(dt1,dt2), dt3)
dt.all$Sum <- with(dt.all, Type1+Type2+Type3)
我无法获得您想要的确切排序顺序,但这很接近:
levels(dt.all$Flag2) <- c("FIRST", "SECOND", "THIRD", "FOURTH" ,"FIFTH", "SIXTH", "Sum" )
dt.all[order(dt.all$Flag1, dt.all$Flag2), ]
Flag1 Flag2 Type1 Type2 Type3 Sum
1 A FIRST 1 22 0 23
2 A SECOND 2 0 0 2
3 A THIRD 9 18 0 27
4 A FOURTH 1 9 0 10
5 A FIFTH 1 13 0 14
7 A SIXTH 3 7 0 10
6 A Sum 17 69 0 86
8 B FIRST 3 40 0 43
9 B SECOND 0 0 0 0
10 B THIRD 4 96 0 100
11 B FOURTH 3 9 0 12
12 B FIFTH 0 17 0 17
14 B SIXTH 5 85 0 90
13 B Sum 15 247 0 262
15 Sum FIRST 4 62 0 66
16 Sum SECOND 2 0 0 2
17 Sum THIRD 13 114 0 127
18 Sum FOURTH 4 18 0 22
19 Sum FIFTH 1 30 0 31
21 Sum SIXTH 8 92 0 100
20 Sum Sum 32 316 0 348
答案 1 :(得分:2)
rowSums
适合我(或者我错过了什么?)。
> my.df <- read.table(textConnection(" Flag1 Flag2 Type1 Type2 Type3
+ 1 A FIRST 2 0 0
+ 2 A SECOND 1 9 0
+ 3 A THIRD 3 7 0
+ 4 A FOURTH 9 18 0
+ 5 A FIFTH 1 22 0
+ 6 A SIXTH 1 13 0
+ 7 B FIRST 0 0 0
+ 8 B SECOND 3 9 0
+ 9 B THIRD 5 85 0
+ 10 B FOURTH 4 96 0
+ 11 B FIFTH 3 40 0
+ 12 B SIXTH 0 17 0
+ "))
Browse[2]> my.df
Flag1 Flag2 Type1 Type2 Type3
1 A FIRST 2 0 0
2 A SECOND 1 9 0
3 A THIRD 3 7 0
4 A FOURTH 9 18 0
5 A FIFTH 1 22 0
6 A SIXTH 1 13 0
7 B FIRST 0 0 0
8 B SECOND 3 9 0
9 B THIRD 5 85 0
10 B FOURTH 4 96 0
11 B FIFTH 3 40 0
12 B SIXTH 0 17 0
Browse[2]> rowSums(my.df[3:5])
1 2 3 4 5 6 7 8 9 10 11 12
2 10 10 27 23 14 0 12 90 100 43 17
Browse[2]> my.df$Sum <- rowSums(my.df[3:5])
Browse[2]> my.df
Flag1 Flag2 Type1 Type2 Type3 Sum
1 A FIRST 2 0 0 2
2 A SECOND 1 9 0 10
3 A THIRD 3 7 0 10
4 A FOURTH 9 18 0 27
5 A FIFTH 1 22 0 23
6 A SIXTH 1 13 0 14
7 B FIRST 0 0 0 0
8 B SECOND 3 9 0 12
9 B THIRD 5 85 0 90
10 B FOURTH 4 96 0 100
11 B FIFTH 3 40 0 43
12 B SIXTH 0 17 0 17