这是完整的问题:
问题3 [30分]。 编写一个由两个正整数k和n组成的函数,其工作原理如下 1.打印长度为k的所有递增序列,其中包含数字1 ... n 2.返回此类序列的数量。例如
int print_k_sequences( int n, int k)
For example, print_k_sequences( 5 , 3) prints the following sequences
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
and returns 10
由您决定打印顺序的具体顺序。仅添加一个空间 在数字之间。不要忘了用新行分隔序列。 您的函数应该在合理的时间内对输入n,k最多进行20次运算。 [提示:使用递归。您可能还需要使用辅助功能]
我的实现仅打印第一个序列,然后停止。我要去哪里错了?
//helper for printing array
void printArr( int arr[], int size){
for(int i =0; i<size; i++)
{
printf("%d", arr[i] );
}
printf("\n");
return;
}
int findSeq ( int arr[], int n, int k){
/* start from last index and find first elelment less than n if righmost element
is n then we have to incremenet arr value with 1 at starting index*/
int p = k -1;
while(arr[p == n])
{
p=0;
}
// if the last element is the n and the difference of n and k is one greater
// thant the first elelment that means last sequence is generated
if(arr[k-1] ==n && (n-k) == arr[0]-1)
{
return 0;
}
/* else increase the value of array element till n*/
arr[p] = arr[p] + 1;
/* the nextr index value of array shoul always be greater than previous value */
for (int i = p+1; i<k; i++)
{
arr[i] = arr[i-1] +1;
}
return 1;
}
int print_k_sequences(int n,int k) {
// implement me
int arr[k];
int count = 0;
/*values of first seq*/
while (1){
printArr(arr, k);
count++;
if(findSeq(arr, n, k) == 0)
{
break;
}
}
return count;
}
这是对其进行测试的代码:请注意,主功能的任何参数都不能更改。
bool test_q3_1() {
int ans = print_k_sequences(6, 2);
if (ans == 15) {
// need to also check the actual sequences
printf("Q3-1 ok\n");
return true;
}
else {
printf("Q3-2 ERROR: answer=%d, correct=15 \n", ans);
return false;
}
}
bool test_q3_2() {
int ans = print_k_sequences(8, 3);
if (ans == 56) {
// need to also check the actual sequences
printf("Q3-2 ok\n");
return true;
}
else {
printf("Q3-2 ERROR: answer=%d, correct=56 \n", ans);
return false;
}
}
提前谢谢!
答案 0 :(得分:0)
弄清楚了:)
对于遇到此问题的任何人:
#include <stdio.h>
int numberOfSequences; // global variable to count number of sequences generated
// function to print contents of arr[0..k-1]
void OutputSequence(int arr[], int k) {
for (int i = 0; i < k; i++)
printf("%d ", arr[i]);
printf("\n");
}
// function to generate all increasing sequences from 1..n of length k
void generateSequence(int n, int k, int *len, int arr[]) {
// If length of the array sequence becomes k
if (*len == k) {
numberOfSequences++; // we increment the counter by 1
OutputSequence(arr, k); // and print that sequence
return;
}
int i;
// If length is 0, then start putting new numbers in the sequence from 1.
// If length is not 0, then start from previous element +1.
if (*len == 0)
i = 1;
else
i = arr[*len - 1] + 1;
// Increase length of the sequence so far
(*len)++;
// Put all numbers (which are greater than the previous element) at new position.
while (i <= n) {
arr[(*len) - 1] = i; // adding the new element to the sequence
generateSequence(n, k, len, arr);// generating the subsequent elements in the sequence
i++;
}
(*len)--;
}
// driver function to print all increasing sequences from 1..n of length k
// and return the number of such sequences
int print_k_sequences(int n, int k) {
int arr[k]; // array to store individual sequences
int len = 0; // Initial length of current sequence
numberOfSequences = 0; // counter to count number of sequences
generateSequence(n, k, &len, arr);
return numberOfSequences;
}
int main() {
int k = 3, n = 5;
printf("The sequences between 1.. %d of length %d are:\n", n, k);
int ans = print_k_sequences(n, k);
printf("No of sequences= %d\n", ans);
return 0;
}