我有一个数据框,我想根据不同的条件删除重复项。...
A B
0 1 1.0
1 1 1.0
2 2 2.0
3 2 2.0
4 3 3.0
5 4 4.0
6 5 5.0
7 - 5.1
8 - 5.1
9 - 5.3
我想删除A列中所有重复项,但带有“-”的行除外。在此之后,我想基于A列的B列值,使用“-”作为值从A列删除重复项。给定输入数据框,它应该返回以下内容:-
A B
0 1 1.0
2 2 2.0
4 3 3.0
5 4 4.0
6 5 5.0
7 - 5.1
9 - 5.3
我有以下代码,但对于大量数据而言效率不高,我该如何改善它。...
def generate(df):
str_col = df[df["A"] == "-"]
df.drop(df[df["A"] == "-"].index, inplace=True)
df = df.drop_duplicates(subset="A")
str_col = b.drop_duplicates(subset="B")
bigdata = df.append(str_col, ignore_index=True)
return bigdata.sort_values("B")
答案 0 :(得分:5)
duplicated
和eq
:
df[~df.duplicated('A') # keep those not duplicates in A
| (df['A'].eq('-') # or those '-' in A
& ~df['B'].duplicated())] # which are not duplicates in B
输出:
A B
0 1 1.0
2 2 2.0
4 3 3.0
5 4 4.0
6 5 5.0
7 - 5.1
9 - 5.3
答案 1 :(得分:2)
df.drop_duplicates(subset=['A', 'B'])
给出一整套数据:
A B C
0 1 1.0 0
1 1 1.0 1
2 2 2.0 2
3 2 2.0 3
4 3 3.0 4
5 4 4.0 5
6 5 5.0 6
7 - 5.1 7
8 - 5.1 8
9 - 5.3 9
结果:
A B C
0 1 1.0 0
2 2 2.0 2
4 3 3.0 4
5 4 4.0 5
6 5 5.0 6
7 - 5.1 7
9 - 5.3 9
答案 2 :(得分:2)
groupby
+ head
df.groupby(['A','B']).head(1)
Out[7]:
A B
0 1 1.0
2 2 2.0
4 3 3.0
5 4 4.0
6 5 5.0
7 - 5.1
9 - 5.3