我有一个数据文件,例如:
示例:
X Y month day FFMC DMC DC ISI RH wind rain area
68 2 2 sep fri 92.4 117.9 668.0 12.2 33 6.3 0.0 0.00
228 4 6 sep sun 93.5 149.3 728.6 8.1 26 3.1 0.0 64.10
387 5 5 mar thu 90.9 18.9 30.6 8.0 48 5.4 0.0 0.00
我正在尝试将其随机拆分为训练集和测试集,但要基于列而不是行,从第3列到末尾,并且训练集和测试集都将包含前2列。为此,我尝试使用:
from sklearn.cross_validation import train_test_split
data = pd.read_csv('mydata.txt', sep="\t")
data_train, data_test = train_test_split(data, test_size=0.3)
但是此程序包将行而不是列分开。然后我尝试转置文件并使用相同的包,如下所示:
X_train, X_test = train_test_split(data.T, test_size=0.3)
这是预期的输出:
火车组:
X Y month day FFMC DC ISI RH area
68 2 2 sep fri 92.4 668.0 12.2 33 0.00
228 4 6 sep sun 93.5 728.6 8.1 26 64.10
387 5 5 mar thu 90.9 30.6 8.0 48 0.00
测试集:
X Y DMC wind rain
68 2 2 117.9 6.3 0.0
228 4 6 149.3 3.1 0.0
387 5 5 18.9 5.4 0.0
您知道我如何修复代码以获得预期的训练和测试集吗?
答案 0 :(得分:0)
您可以通过编写自己的函数来手动完成此操作:
import pandas as pd
import numpy as np
data = pd.read_csv('mydata.txt', sep="\t")
columns = data.columns
keep = ['X','Y']
def split_columns(columns_list, keep_columns, frac=0.2):
# remove the common columns for the moment
for col in keep_columns:
columns.remove(col)
# shuffle the rest of the column list
np.random.shuffle(columns)
# select the right proportion for the train and test set
cut = max(1, int((1-frac)*len(columns)))
train = columns[:cut]
test = columns[cut:]
# Add common columns to both lists
train.extend(keep_columns)
test.extend(keep_columns)
return train, test
train_columns, test_columns = split_columns(columns, keep)
# Build your train and test set by selecting the appropriate subset of columns
train = data[train_columns]
test = data[test_columns]