所以,我怀疑并一直在寻找答案。所以问题是我什么时候使用,
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
df = pd.DataFrame({'A':[1,2,3,7,9,15,16,1,5,6,2,4,8,9],'B':[15,12,10,11,8,14,17,20,4,12,4,5,17,19],'C':['Y','Y','Y','Y','N','N','N','Y','N','Y','N','N','Y','Y']})
df[['A','B']] = min_max_scaler.fit_transform(df[['A','B']])
df['C'] = df['C'].apply(lambda x: 0 if x.strip()=='N' else 1)
之后,我将训练并测试模型(A
,B
作为特征,C
作为标签)并获得一些准确度分数。现在我怀疑的是,当我必须预测新数据集的标签时会发生什么。说,
df = pd.DataFrame({'A':[25,67,24,76,23],'B':[2,54,22,75,19]})
因为当我对列进行规范化时,A
和B
的值将根据新数据而不是模型将要训练的数据进行更改。
那么,现在我的数据准备步骤之后的数据如下所示。
data[['A','B']] = min_max_scaler.fit_transform(data[['A','B']])
A
和B
的值将相对于Max
的{{1}}和Min
值发生变化。 df[['A','B']]
的数据准备与df[['A','B']]
的{{1}}相关。
对于不同的数字,数据准备如何有效?我不明白这里的预测是否正确。
答案 0 :(得分:18)
MinMaxScaler
数据填充training
,然后在预测之前在testing
数据上应用缩放器。总结:
scaler
放在TRAINING data
scaler
至transform the training data
transformed training data
至fit the predictive model
scaler
至transform the TEST data
predict
使用trained model
和transformed TEST data
使用您的数据的示例:
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
#training data
df = pd.DataFrame({'A':[1,2,3,7,9,15,16,1,5,6,2,4,8,9],'B':[15,12,10,11,8,14,17,20,4,12,4,5,17,19],'C':['Y','Y','Y','Y','N','N','N','Y','N','Y','N','N','Y','Y']})
#fit and transform the training data and use them for the model training
df[['A','B']] = min_max_scaler.fit_transform(df[['A','B']])
df['C'] = df['C'].apply(lambda x: 0 if x.strip()=='N' else 1)
#fit the model
model.fit(df['A','B'])
#after the model training on the transformed training data define the testing data df_test
df_test = pd.DataFrame({'A':[25,67,24,76,23],'B':[2,54,22,75,19]})
#before the prediction of the test data, ONLY APPLY the scaler on them
df_test[['A','B']] = min_max_scaler.transform(df_test[['A','B']])
#test the model
y_predicted_from_model = model.predict(df_test['A','B'])
使用虹膜数据的示例:
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVC
data = datasets.load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
model = SVC()
model.fit(X_train_scaled, y_train)
X_test_scaled = scaler.transform(X_test)
y_pred = model.predict(X_test_scaled)
希望这有帮助。
答案 1 :(得分:0)
最好的方法是训练并保存MinMaxScaler模型,并在需要时加载相同的模型。
保存模型:
df = pd.DataFrame({'A':[1,2,3,7,9,15,16,1,5,6,2,4,8,9],'B':[15,12,10,11,8,14,17,20,4,12,4,5,17,19],'C':['Y','Y','Y','Y','N','N','N','Y','N','Y','N','N','Y','Y']})
df[['A','B']] = min_max_scaler.fit_transform(df[['A','B']])
pickle.dump(min_max_scaler, open("scaler.pkl", 'wb'))
加载保存的模型:
scalerObj = pickle.load(open("scaler.pkl", 'rb'))
df_test = pd.DataFrame({'A':[25,67,24,76,23],'B':[2,54,22,75,19]})
df_test[['A','B']] = scalerObj.transform(df_test[['A','B']])