我发现了这个github repository,它很好地描绘了深度学习架构。
现在我想以某种方式绘制该仓库中不可用的Dropout层。我尝试创建2个新类:在Conv层之后用于Dropout层的DropoutConv2D和在像这样的致密层之后用于dropout层的DropoutDense。
class DropoutDense(Layer):
def __init__(self):
super(DropoutDense, self).__init__(filters = units)
def get_description(self):
return ["dropout"]
def set_objects(self):
x1 = self.prev_feature_map.right
y11 = - math.pow(self.prev_feature_map.c, config.channel_scale) / 2
y12 = math.pow(self.prev_feature_map.c, config.channel_scale) / 2
x2 = self.next_feature_map.left
y2 = - math.pow(self.next_feature_map.c, config.channel_scale) / 4
line_color = config.line_color_layer
self.objects.append(Line(x1, y11, x2, y2, color=line_color, dasharray=2))
self.objects.append(Line(x1, y12, x2, y2, color=line_color, dasharray=2))
x = (self.prev_feature_map.right + self.next_feature_map.left) / 2
y = max(self.prev_feature_map.get_bottom(), self.next_feature_map.get_bottom()) + config.text_margin \
+ config.text_size
for i, description in enumerate(self.get_description()):
self.objects.append(Text(x, y + i * config.text_size, "{}".format(description),
color=config.text_color_layer, size=config.text_size))
这里的人有没有与此仓库一起工作并给我建议。