我正在尝试使用Mahalanobis距离损失在Keras中实现自定义损失功能。但是我总是遇到这个烦人的错误。
马哈拉诺比斯距离(或平方值的“广义平方点间距离” [3])也可以定义为与协方差矩阵S具有相同分布的两个随机向量x和y之间的相异性度量。
d(x,y)=正方形[Transpose(x-y)* Inverse(S)*(x-y)]
(https://en.wikipedia.org/wiki/Mahalanobis_distance)
n_classes = 4
n_samples=800
X, y = make_classification(n_samples=n_samples, n_features=20, n_informative=4, n_redundant=0, n_classes=n_classes, n_clusters_per_class=2)
y = to_categorical(y)
Xtrainb, testXb, ytrainb, ytestb = train_test_split(X, y, test_size = 0.3, random_state=42)
x_trainb = np.reshape(Xtrainb, (Xtrainb.shape[0], Xtrainb.shape[1], 1))
Xtestb = np.reshape(testXb, (testXb.shape[0], testXb.shape[1], 1))
densesize = 4
input_datab = Input(shape=(Xtrainb.shape[1],1))
epochs = 10
batch_size = 32
dropout= 0.1
lr= 0.001
########
def mahalanobis(y_true, y_pred):
x_minus_mn_with_transpose = K.transpose(y_true - y_pred)
Covariance = covr1(y_true, y_pred)
inv_covmat = tf.linalg.inv(Covariance)
x_minus_mn = y_true - y_pred
left_term = K.dot(x_minus_mn, inv_covmat)
D_square = K.dot(left_term, x_minus_mn_with_transpose)
return D_square
def covr1(y_true, y_pred):
#x_mean = K.mean(y_true)
#y_mean = K.mean(y_pred)
Cov_numerator = K.sum(((y_true - y_pred)*(y_true - y_pred)))
Cov_denomerator = len(Xtrainb)-1
Covariance = (Cov_numerator / Cov_denomerator)
return Covariance
conv1= Conv1D(filters=80, kernel_size=2, padding='same', input_dim=Xtrainb.shape[1])(input_datab)
maxpool = MaxPooling1D(pool_size=3, stride=3 )(conv1)
conv2= Conv1D(filters=50, kernel_size=2, padding='same', input_dim=Xtrainb.shape[1])(maxpool)
maxpool = MaxPooling1D(pool_size=3, stride=3)(conv2)
flatten = Flatten()(maxpool)
dense = Dense(84, activation='relu')(flatten)
dense = Dense(1024, activation='relu')(flatten)
dense = Dense(densesize, activation='softmax')(dense)
model = Model(inputs=[input_datab],outputs=[dense])
model.compile(loss= mahalanobis, optimizer='adam', metrics=['acc'])
hist = model.fit(x_trainb, ytrainb, validation_data=(Xtestb, ytestb), epochs=epochs, batch_size=batch_size)
ValueError:对于输入形状为[]的“ loss_88 / dense_270_loss / MatrixInverse”(运算符:“ MatrixInverse”),形状必须至少为2级,但其等级为0。
答案 0 :(得分:0)
您的代码的问题是在计算协方差矩阵时
我的马氏距离是:希望这项工作对您有用;因为它对我有用:)
def mahala_dist(m, n):
diff = m - n
cov = tfp.stats.covariance(tf.transpose(n))
mull = K.dot(tf.linalg.inv(cov), diff)
mull2 = K.dot(mull, tf.transpose(diff))
dist = tf.sqrt(mull2)
return dist
它可与TF和Keras框架一起使用。 祝你好运。