我正在尝试按索引和列进行排序,但无济于事。
部分数据集
ID Element Data_Value
Date
2005-01-01 USW00004848 TMIN 0
2005-01-01 USC00207320 TMAX 150
2005-01-01 USC00207320 TMIN -11
2005-01-01 USW00014833 TMIN -44
2005-01-01 USW00014833 TMAX 33
索引列
DatetimeIndex(['2005-01-01', '2005-01-01', '2005-01-01', '2005-01-01',
'2005-01-01', '2005-01-01', '2005-01-01', '2005-01-01',
'2005-01-01', '2005-01-01',
...
'2015-12-31', '2015-12-31', '2015-12-31', '2015-12-31',
'2015-12-31', '2015-12-31', '2015-12-31', '2015-12-31',
'2015-12-31', '2015-12-31'],
dtype='datetime64[ns]', name='Date', length=165002, freq=None)
我的尝试
df2 = df2.rename_axis(df2.index).sort_values(by = [df2.index, 'ID'], ascending = [False, True])
上面的输出: ValueError:新名称的长度必须为1,为165002
df2 = df2.rename_axis("Date").sort_values(by = ["Date", "ID"], ascending = [False, True])
上面的输出: KeyError:“日期”
df2 = df2.sort_values(by = [df2.index, 'ID'], ascending = [False, True])
上面的输出: KeyError:“ DatetimeIndex(['2005-01-01','2005-01-01','2005-01 -01','2005-01-01',\ n'2005-01-01','2005-01-01','2005-01-01','2005-01-01',\ n'2005 -01-01','2005-01-01',\ n ... \ n'2015-12-31','2015-12-31','2015-12-31','2015-12- 31',\ n'2015-12-31','2015-12-31','2015-12-31','2015-12-31',\ n'2015-12-31','2015- 12-31'],\ n dtype ='datetime64 [ns]',name ='Date',length = 165002,freq = None)不在索引中”
df2 = df2.sort_values(by = ["Date", "ID"], ascending = [False, True])
上面的输出: KeyError:“日期”
df2 = df2.sort_values(by = [df2.index.Date, 'ID'], ascending = [False, True])
上面的输出: AttributeError:'DatetimeIndex'对象没有属性'Date'
答案 0 :(得分:1)
在最新的熊猫版本0.23+中,此方法很不错:
print (df2.index)
DatetimeIndex(['2005-01-01', '2005-01-01', '2005-01-01', '2005-01-01',
'2005-01-01'],
dtype='datetime64[ns]', name='Date', freq=None)
df2 = df2.sort_values(by = ["Date", "ID"], ascending = [False, True])
print (df2)
ID Element Data_Value
Date
2005-01-01 USC00207320 TMAX 150
2005-01-01 USC00207320 TMIN -11
2005-01-01 USW00004848 TMIN 0
2005-01-01 USW00014833 TMIN -44
2005-01-01 USW00014833 TMAX 33
在某些较早的熊猫版本中也可以使用的另一种解决方案是将DatetimeIndex
转换为列首,进行排序并转换回:
df2 = (df2.reset_index()
.sort_values(by = ["Date", "ID"], ascending = [False, True])
.set_index('Date'))
感谢@Alexander供选择:
df2 = (df.set_index('ID', append=True)
.sort_index(ascending=[False, True])
.reset_index('ID'))
print (df2)
ID Element Data_Value
Date
2005-01-01 USC00207320 TMAX 150
2005-01-01 USC00207320 TMIN -11
2005-01-01 USW00004848 TMIN 0
2005-01-01 USW00014833 TMIN -44
2005-01-01 USW00014833 TMAX 33