如何将熊猫数据框的每个数字元素转换为整数?我没有在网上看到任何有关此操作的文档,这令人惊讶,因为Pandas非常受欢迎...
答案 0 :(得分:3)
如果您有一个整数数据框,只需直接使用astype
。
df.astype(int)
否则,请先使用select_dtypes
选择数字列。
df.select_dtypes(np.number).astype(int)
df = pd.DataFrame({'col1': [1.,2.,3.,4.], 'col2': [10.,20.,30.,40.]})
col1 col2
0 1.0 10.0
1 2.0 20.0
2 3.0 30.0
3 4.0 40.0
>>> df.astype(int)
col1 col2
0 1 10
1 2 20
2 3 30
3 4 40
答案 1 :(得分:1)
您可以将apply
用于此目的:
import pandas as pd
import numpy as np
df = pd.DataFrame({'A':np.arange(1.0, 20.0), 'B':np.arange(101.0, 120.0)})
print(df)
A B
0 1.0 101.0
1 2.0 102.0
2 3.0 103.0
3 4.0 104.0
4 5.0 105.0
5 6.0 106.0
6 7.0 107.0
7 8.0 108.0
8 9.0 109.0
9 10.0 110.0
10 11.0 111.0
11 12.0 112.0
12 13.0 113.0
13 14.0 114.0
14 15.0 115.0
15 16.0 116.0
16 17.0 117.0
17 18.0 118.0
18 19.0 119.0
df2 = df.apply(lambda a: [int(b) for b in a])
print(df2)
A B
0 1 101
1 2 102
2 3 103
3 4 104
4 5 105
5 6 106
6 7 107
7 8 108
8 9 109
9 10 110
10 11 111
11 12 112
12 13 113
13 14 114
14 15 115
15 16 116
16 17 117
17 18 118
18 19 119
一种更好的方法是在系列级别更改类型:
for col in df.columns:
if df[col].dtype == np.float64:
df[col] = df[col].astype('int')
print(df)
A B
0 1 101
1 2 102
2 3 103
3 4 104
4 5 105
5 6 106
6 7 107
7 8 108
8 9 109
9 10 110
10 11 111
11 12 112
12 13 113
13 14 114
14 15 115
15 16 116
16 17 117
17 18 118
18 19 119
答案 2 :(得分:1)
尝试一下:
column_types = dict(df.dtypes)
for column in df.columns:
if column_types[column] == 'float64':
df[column] = df[column].astype('int')
df[column] = df[column].apply(lambda x: int(x))