我正在RStudio中工作,并希望为XGBoost开发自定义目标函数。为了确保我了解该过程的工作原理,我试图编写一个目标函数来复制“ binary:logistic”目标。但是,我的自定义目标函数产生的结果却大不相同(通常差很多)。
基于the examples on the XGBoost github repo,我的自定义目标函数如下所示:
# custom objective function
logloss <- function(preds, dtrain){
# Get weights and labels
labels<- getinfo(dtrain, "label")
# Apply logistic transform to predictions
preds <- 1/(1 + exp(-preds))
# Find gradient and hessian
grad <- (preds - labels)
hess <- preds * (1-preds)
return(list("grad" = grad, "hess" = hess))
}
基于this medium blog post,这似乎与XGBoost二进制目标中实现的内容相匹配。
使用一些简单的测试数据,我对内置目标的最终训练均方根值为〜0.468,而使用我的自定义目标则为〜0.72。
下面的代码可用于生成测试数据并重现问题。
有人可以解释为什么我的代码没有重现客观的“ binary:logistic”行为吗?我正在使用XGBoost R-Package v0.90.0.2。
library(data.table)
library(xgboost)
# Generate test data
generate_test_data <- function(n_rows = 1e5, feature_count = 5, train_fraction = 0.5){
# Make targets
test_data <- data.table(
target = sign(runif(n = n_rows, min=-1, max=1))
)
# Add feature columns.These are normally distributed and shifted by the target
# in order to create a noisy signal
for(feature in 1:feature_count){
# Randomly create features of the noise
mu <- runif(1, min=-1, max=1)
sdev <- runif(1, min=5, max=10)
# Create noisy signal
test_data[, paste0("feature_", feature) := rnorm(
n=n_rows, mean = mu, sd = sdev)*target + target]
}
# Split data into test/train
test_data[, index_fraction := .I/.N]
split_data <- list(
"train" = test_data[index_fraction < (train_fraction)],
"test" = test_data[index_fraction >= (train_fraction)]
)
# Make vector of feature names
feature_names <- paste0("feature_", 1:feature_count)
# Make test/train matrix and labels
split_data[["test_trix"]] <- as.matrix(split_data$test[, feature_names, with=FALSE])
split_data[["train_trix"]] <- as.matrix(split_data$train[, feature_names, with=FALSE])
split_data[["test_labels"]] <- as.logical(split_data$test$target + 1)
split_data[["train_labels"]] <- as.logical(split_data$train$target + 1)
return(split_data)
}
# Build the tree
build_model <- function(split_data, objective){
# Make evaluation matrix
train_dtrix <-
xgb.DMatrix(
data = split_data$train_trix, label = split_data$train_labels)
# Train the model
model <- xgb.train(
data = train_dtrix,
watchlist = list(
train = train_dtrix),
nrounds = 5,
objective = objective,
eval_metric = "rmse"
)
return(model)
}
split_data <- generate_test_data()
cat("\nUsing built-in binary:logistic objective.\n")
test_1 <- build_model(split_data, "binary:logistic")
cat("\n\nUsing custom objective")
test_2 <- build_model(split_data, logloss)