从Pgatour.com网站上刮一下,该网站会定期更新统计信息。他们拥有可追溯到2010年的历史数据,这些数据已被抓取到平坦的csv文件中。 使用pd.read_csv(filename)成功读取该内容。刮擦时间是2010-2019年。
SG_P SG_T SG_TTG SG_OTT SG_ATG POINTS 7 0.243 1.195 0.952 0.338 0.168 718.0 8 0.098 1.192 1.091 0.724 0.260 445.0 9 -0.147 1.001 1.151 0.185 0.738 843.0 11 0.054 0.984 0.927 0.151 0.507 718.0 12 0.137 1.156 1.014 0.403 0.642 500.0
在修改了一个新数据框后,我仅保留了具有非线性关系的“ SG”统计信息或“ Strokes-Gained”以告知高尔夫球手的“积分”,我们为测试数据运行了0.33%的train_test_split。目标变量是“ POINTS”。
在其他Kaggle runs of this project中,结果通常在.70精度范围内。
对于Scikitlearn的线性回归,我的范围在.25-.30之间,这会产生非常不拟合的数据,当与Seaborn一起绘制时,结果很差。
training set r^2 score = 0.2601442196444287
testing set r^2 score = 0.2602966900574226
线性回归代码如下:
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# Split features and target
X = df2.iloc[: ,:-1] # Get the features minus OWGR which is the target
y = df2.iloc[:,-1:] # Just get the target
# Train test split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.33,random_state=12)
lr = LinearRegression(n_jobs = -1,normalize=True)
lr.fit(X_train, y_train)
training set r^2 score = 0.2601442196444287
testing set r^2 score = 0.2602966900574226
以下是多边形版本:
from sklearn.preprocessing import PolynomialFeatures
degree = 2 # Start with 2
poly = PolynomialFeatures(degree, include_bias=False)
X_poly = poly.fit_transform(X) # No longer a pandas dataframe
y_poly = y # Still a pandas dataframe
X_poly_train, X_poly_test, y_poly_train, y_poly_test = train_test_split(X_poly, y_poly, random_state=12)
lr_poly = LinearRegression()
lr_poly.fit(X_poly_train, y_poly_train)
training set r^2 score = 0.2902297270799855
testing set r^2 score = 0.1746156333412796
在Kaggle的基准笔记本中,我看到了这样的结果:
线性:
training set r^2 score = 0.5540673510136147
testing set r^2 score = 0.510807136771844
Poly:
training set r^2 score = 0.7466513181026075
testing set r^2 score = 0.6325248963195537
答案 0 :(得分:0)
数据预处理是培训中非常重要的前一步。在此步骤中,对数据进行转换以减少不相关和冗余的信息,处理无效值等。有关数据预处理的某些操作可能包括空值处理,数据维数减少,数据标准化等。如果不执行此过程,则可能最终拥有功能强大且经过精心设计的分类器,该分类器对实际数据的处理效果不佳。试试看,您的结果可能会改善!