阈值4-D numpy数组的更快方法

时间:2019-10-06 07:30:10

标签: python numpy

我有一个要阈值的大小为(98,359,256,269)的4D numpy数组。 现在,我有两个单独的列表,分别保留前2个维度和后2个维度的坐标。 (前2个维度是mag_ang,后2个是索引)。

索引大小:(61821,2)

mag_ang的大小:(35182,2)

当前,我的代码如下:

inner_points = []

for k in indices:
    x = k[0]
    y = k[1]
    for i,ctr in enumerate(mag_ang):
        mag = ctr[0]
        ang = ctr[1]
        if X[mag][ang][x][y] > 10:
            inner_points.append((y,x))

这段代码可以工作,但是速度很慢,我想知道是否还有更多的pythonic /更快的方法来做到这一点?

4 个答案:

答案 0 :(得分:1)

直接使用numpy。如果indicesmag_ang是由两个组成的numpy数组,分别用于相应的坐标:

(x, y), (mag, ang) = indices.T, mag_ang.T
index_matrix = np.meshgrid(mag, ang, x, y).T.reshape(-1,4)
inner_mag, inner_ang, inner_x, inner_y = np.where(X[index_matrix] > 10)

现在,inner...变量为每个坐标保存数组。要获得一份标准票,您可以压缩inner_yinner_x

答案 1 :(得分:1)

(编辑:添加了第二种替代方法)

使用numpy多数组索引:

import time

import numpy as np

n_mag, n_ang, n_x, n_y = 10, 12, 5, 6
shape = n_mag, n_ang, n_x, n_y
X = np.random.random_sample(shape) * 20

nb_indices = 100 # 61821
indices = np.c_[np.random.randint(0, n_x, nb_indices), np.random.randint(0, n_y, nb_indices)]

nb_mag_ang = 50 # 35182
mag_ang = np.c_[np.random.randint(0, n_mag, nb_mag_ang), np.random.randint(0, n_ang, nb_mag_ang)]

# original method
inner_points = []
start = time.time()
for x, y in indices:
    for mag, ang in mag_ang:
        if X[mag][ang][x][y] > 10:
            inner_points.append((y, x))
end = time.time()
print(end - start)

# faster method 1:
inner_points_faster1 = []
start = time.time()
for x, y in indices:
    if np.any(X[mag_ang[:, 0], mag_ang[:, 1], x, y] > 10):
        inner_points_faster1.append((y, x))
end = time.time()
print(end - start)

# faster method 2:
start = time.time()
# note: depending on the real size of mag_ang and indices, you may wish to do this the other way round ?
found = X[:, :, indices[:, 0], indices[:, 1]][mag_ang[:, 0], mag_ang[:, 1], :] > 10
# 'found' shape is (nb_mag_ang x nb_indices)
assert found.shape == (nb_mag_ang, nb_indices)
matching_indices_mask = found.any(axis=0)
inner_points_faster2 = indices[matching_indices_mask, :]
end = time.time()
print(end - start)

# finally assert equality of findings
inner_points = np.unique(np.array(inner_points))
inner_points_faster1 = np.unique(np.array(inner_points_faster1))
inner_points_faster2 = np.unique(inner_points_faster2)
assert np.array_equal(inner_points, inner_points_faster1)
assert np.array_equal(inner_points, inner_points_faster2)

收益

0.04685807228088379
0.0
0.0

(当然,如果增加形状,第二和第三时间将不为零)

最后的注意:这里我在末尾使用“唯一”,但对indicesmag_ang数组预先进行设置可能是明智的选择(除非您确定它们是唯一的)已经)

答案 2 :(得分:1)

以下几种利用broadcasting-

thresh = 10
mask = X[mag_ang[:,0],mag_ang[:,1],indices[:,0,None],indices[:,1,None]]>thresh
r = np.where(mask)[0]
inner_points_out = indices[r][:,::-1]

对于更大的数组,我们可以先进行比较,然后再进行索引以获得掩码-

mask = (X>thresh)[mag_ang[:,0],mag_ang[:,1],indices[:,0,None],indices[:,1,None]]

如果您只对indices附近的唯一坐标感兴趣,请直接使用蒙版-

inner_points_out = indices[mask.any(1)][:,::-1]

对于大型阵列,我们还可以通过numexpr模块利用多核。

因此,首先导入模块-

import numexpr as ne

然后,在前面列出的计算中将(X>thresh)替换为ne.evaluate('X>thresh')

答案 3 :(得分:0)

使用np.where

inner = np.where(X > 10)
a, b, x, y = zip(*inner)
inner_points = np.vstack([y, x]).T