我想将结果数组作为二进制是/否。
我想出了
img = PIL.Image.open(filename)
array = numpy.array(img)
thresholded_array = numpy.copy(array)
brightest = numpy.amax(array)
threshold = brightest/2
for b in xrange(490):
for c in xrange(490):
if array[b][c] > threshold:
thresholded_array[b][c] = 255
else:
thresholded_array[b][c] = 0
out=PIL.Image.fromarray(thresholded_array)
但是一次遍历数组一个值非常慢,我知道必须有更快的方法,最快的是什么?
答案 0 :(得分:7)
您可以通过多种方式一次比较整个阵列,而不是循环。从
开始>>> arr = np.random.randint(0, 255, (3,3))
>>> brightest = arr.max()
>>> threshold = brightest // 2
>>> arr
array([[214, 151, 216],
[206, 10, 162],
[176, 99, 229]])
>>> brightest
229
>>> threshold
114
方法#1:使用np.where
:
>>> np.where(arr > threshold, 255, 0)
array([[255, 255, 255],
[255, 0, 255],
[255, 0, 255]])
方法#2:使用布尔索引来创建新数组
>>> up = arr > threshold
>>> new_arr = np.zeros_like(arr)
>>> new_arr[up] = 255
方法#3:做同样的事,但使用算术黑客
>>> (arr > threshold) * 255
array([[255, 255, 255],
[255, 0, 255],
[255, 0, 255]])
有效,因为False == 0
和True == 1
。
对于1000x1000阵列,看起来算术黑客对我来说最快,但老实说我会使用np.where
因为我觉得它最清楚:
>>> %timeit np.where(arr > threshold, 255, 0)
100 loops, best of 3: 12.3 ms per loop
>>> %timeit up = arr > threshold; new_arr = np.zeros_like(arr); new_arr[up] = 255;
100 loops, best of 3: 14.2 ms per loop
>>> %timeit (arr > threshold) * 255
100 loops, best of 3: 6.05 ms per loop
答案 1 :(得分:2)
我不确定您的阈值操作是否特殊,例如需要为每个像素或其他东西自定义它,但您可以在np.arrays上使用逻辑运算。例如:
import numpy as np
a = np.round(np.random.rand(5,5)*255)
thresholded_array = a > 100; #<-- tresholding on 100 value
print(a)
print(thresholded_array)
给出:
[[ 238. 201. 165. 111. 127.]
[ 188. 55. 157. 121. 129.]
[ 220. 127. 231. 75. 23.]
[ 76. 67. 75. 141. 96.]
[ 228. 94. 172. 26. 195.]]
[[ True True True True True]
[ True False True True True]
[ True True True False False]
[False False False True False]
[ True False True False True]]