我正在进行一个数据科学项目,以分析大量癌症基因组数据,我的计算机效率相对较低,并且cpu和ram较低。结果,要遍历所有样本,需要足够的时间。
我尝试减少任何多余的代码,尝试摆脱for循环的列表理解,我使用了多重处理来拆分任务以使其运行更快。
import re
import xlrd
import os
import time
from multiprocessing import Pool
import collections
import pandas as pd
if os.path.exists("C:\\Users\\js769\\genomemutations\\Input\\ChromosomesVersion") == True:
print("chromosomes in folder")
else:
os.makedirs("C:\\Users\\js769\\genomemutations\\Input\\ChromosomesVersion")
print(
"Chromosome Folder Created, Please transfer current version of chromosome number base data to new file."
)
if os.path.exists("C:\\Users\\js769\\genomemutations\\Input\\MutationSamples") == True:
print("Add sample data to run.")
else:
os.makedirs("C:\\Users\\js769\\genomemutations\\Input\\MutationSamples")
print("Mutation Sample Folder Created, please add mutation sample data to folder.")
if os.path.exists("C:\\Users\\js769\\genomemutations\\output") == True:
print("3")
else:
os.makedirs("C:\\Users\\js769\\genomemutations\\output")
# Require editing of this so it works both on a mac or windows system. Currently this version suited to mac because of higher processing power.
# Require ability to check to see if error occurs
def Main(Yeram):
import os
import glob
import errno
import shutil
import xlrd
import pandas as pd
import time
import re
import numpy as np
FragmentSize = 10000000 # This is fragment size which is adjustable.
# Code not needed
Position1 = Yeram.vectx
Position2 = Yeram.vecty
samplelist = Yeram.samplelist
dictA = Yeram.dictA
FragmentSize = Yeram.FragmentSize
chromosomesizes = Yeram.chromosomesizes
def chromosomex_mutation_data(
chromosomenumber, mutationlist
): # It selects the correct chromosome mutation point data, then it selects the data before the -. Mutation data in form(12-20)
chromosomexlist = ["0-1"]
for mutationposition in mutationlist:
if mutationposition[0:2] == str(chromosomenumber):
chromosomexlist.append(mutationposition[3:])
elif mutationposition[0:2] == (str(chromosomenumber) + ":"):
chromosomexlist.append(mutationposition[2:])
else:
continue
Puremutationdatapoints = [int(mutationposition.split("-")[0]) for mutationposition in chromosomexlist]
return Puremutationdatapoints
def Dictionary_Of_Fragment_mutation(FragmentSize, MutationData, ChromosomeNumber): #
chromosomes = {} # Dictionary
chromosomesize = chromosomesizes[ChromosomeNumber - 1]
# Opening up specific chromosome data and calculating amount of bases present in chromosome
Number_of_fragments = int(chromosomesize / FragmentSize)
for mutation in MutationData:
for i in range(0, (Number_of_fragments), 1):
a = (
"Chromosome"
+ str(ChromosomeNumber)
+ "Fragment"
+ str(i)
+ ",Basepairs "
+ str(i * FragmentSize + 1)
+ "-"
+ str(i * FragmentSize + FragmentSize)
)
if mutation in range(i * FragmentSize + 1, i * FragmentSize + FragmentSize + 1):
if chromosomes.get(a) == None:
chromosomes.update({a: 1})
else:
b = (chromosomes.get(a)) + 1
chromosomes.update({a: b})
else:
if chromosomes.get(a) == None:
chromosomes.update({a: 0})
else:
continue
return chromosomes # adds
# This adds mutations or no mutation to each fragment for chromosome,makes dicitonaries
def DictionaryRead(FragmentSize, Dict, ChromosomeNumber):
chromosomesize = chromosomesizes[ChromosomeNumber - 1]
Number_of_fragments = int(chromosomesize / FragmentSize)
chromosomefragmentlist = []
for i in range(0, (Number_of_fragments), 1):
a = (
"Chromosome"
+ str(ChromosomeNumber)
+ "Fragment"
+ str(i)
+ ",Basepairs "
+ str(i * FragmentSize + 1)
+ "-"
+ str(i * FragmentSize + FragmentSize)
)
chromosomefragmentlist.append(str(Dict.get((a))))
return chromosomefragmentlist
# This uses dictionary to create list
def forwardpackage2(FragmentSize, PureMutationData):
C = [] # list of data in numerical order 0 = no mutation
for i in range(1, 23, 1):
A = chromosomex_mutation_data(i, PureMutationData) # Purifies Data
B = Dictionary_Of_Fragment_mutation(FragmentSize, A, i) # Constructs Dictionary
C += DictionaryRead(
FragmentSize, B, i
) # Uses constructed Dictionary amd generates list of numbers, each number being a fragment in numerical order.
return C
def Mutationpointdata(Position1, Position2, dictA, FragmentSize): # Require dictA
vectx = Position1
vecty = Position2
Samplesandmutationpoints = []
for i in range(vectx, vecty):
print(samplelist[i])
new = [k for k, v in dictA.items() if int(v) == samplelist[i]]
mutationlist = [excelsheet.cell_value(i, 23) for i in new]
mutationlist.sort()
Samplesandmutationpoints.append(forwardpackage2(FragmentSize, mutationlist))
return Samplesandmutationpoints
# Opening sample data from excel table
return Mutationpointdata(Position1, Position2, dictA, FragmentSize) # yeram to james samples
def ChromosomeSequenceData(ChromosomeNumber): # Formats the chromosome file into readable information
with open(
r"C:\Users\js769\genomemutations\Input\ChromosomesVersion\chr" + str(ChromosomeNumber) + ".fa"
) as text_file:
text_data = text_file.read()
listA = re.sub("\n", "", text_data)
# list2=[z for z in text_data if z!= "\n"]
if ChromosomeNumber < 10:
ChromosomeSequenceData = listA[5:]
else:
ChromosomeSequenceData = listA[6:]
return ChromosomeSequenceData
def basepercentage_single(
i, FragmentSize, ChromosomeSequenceData
): # Creates a list of base percentage known for certain type of chromosome.
sentence = ChromosomeSequenceData[(i * FragmentSize + 1) : (i * FragmentSize + FragmentSize)]
a = sentence.count("N") + sentence.count("n")
c = str(((FragmentSize - a) / FragmentSize) * 100) + "%"
return c
def basepercentage_multiple(
FragmentSize, ChromosomeSequenceData
): # Creates a a list of base percentages known which correspond with the dna fragments for every chromosome.
fragmentamount = int(len(ChromosomeSequenceData) / FragmentSize)
list = [
basepercentage_single(i, FragmentSize, ChromosomeSequenceData) for i in range(0, (fragmentamount), 1)
]
return list
def FragmentEncodedPercentage(
FragmentSize
): # Packages a list of base percentages known which correspond with the dna fragments for every chromosome.
Initial_list = [basepercentage_multiple(FragmentSize, ChromosomeSequenceData(i)) for i in range(1, 23, 1)]
List_of_fragment_encoded_percentages = [item for sublist in Initial_list for item in sublist]
return List_of_fragment_encoded_percentages
def chromosomefragmentlist(
FragmentSize, ChromosomeNumber
): # Creares a list of fragment sizes for a specific chromosome.
chromosomesize = chromosomesizes[ChromosomeNumber - 1]
Number_of_fragments = int(chromosomesize / FragmentSize)
chromosomefragmentlist = []
for i in range(0, (Number_of_fragments), 1):
a = (
"Chromosome"
+ str(ChromosomeNumber)
+ "Fragment"
+ str(i)
+ ",Basepairs "
+ str(i * FragmentSize + 1)
+ "-"
+ str(i * FragmentSize + FragmentSize)
)
chromosomefragmentlist.append(str(((a))))
return chromosomefragmentlist
def GenomeFragmentGenerator(
FragmentSize
): # Creates the genome fragments for all chromosomes and adds them all to a list.
list = [chromosomefragmentlist(FragmentSize, i) for i in range(1, 23, 1)]
A = [item for sublist in list for item in sublist]
return A
def excelcreation(
mutationdata, samplelist, alpha, bravo, FragmentSize, A, B
): # Program runs sample alpha to bravo and then constructs excel table
data = {"GenomeFragments": A, "Encoded Base Percentage": B}
for i in range(alpha, bravo):
data.update({str(samplelist[i]): mutationdata[i]})
df = pd.DataFrame(data, index=A)
export_csv = df.to_csv(
r"C:/Users/js769/genomemutations/output/chromosomeAll.csv", index=None, header=True
)
start_time = time.time()
# Code determine base fragment size
FragmentSize = 1000000
chromosomesizes = [] # This calculates the base pair sizes for each chromosome.
for i in range(1, 23):
with open(r"C:\Users\js769\genomemutations\Input\ChromosomesVersion\chr" + str(i) + ".fa") as text_file:
text_data = text_file.read()
list = re.sub("\n", "", text_data)
if i < 10:
chromosomesizes.append(len(list[5:]))
else:
chromosomesizes.append(len(list[6:]))
wb = xlrd.open_workbook("C:/Users/js769/genomemutations/input/MutationSamples/Complete Sample For lungs.xlsx")
excelsheet = wb.sheet_by_index(0)
excelsheet.cell_value(0, 0)
sampleswithduplicates = [excelsheet.cell_value(i, 5) for i in range(1, excelsheet.nrows)]
samplelist = []
for sample in sampleswithduplicates:
if sample not in samplelist:
samplelist.append(int(sample)) # Constructs list of sample , each sample only comes up once
dictA = {}
counter = 1 # Creates a dictionary where it counts the
for sample in sampleswithduplicates:
dictA.update({counter: int(sample)})
counter = counter + 1
A = GenomeFragmentGenerator(FragmentSize)
B = FragmentEncodedPercentage(FragmentSize)
value = collections.namedtuple(
"value", ["vectx", "vecty", "samplelist", "dictA", "FragmentSize", "chromosomesizes"]
)
SampleValues = (
value(
vectx=0,
vecty=2,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
value(
vectx=2,
vecty=4,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
value(
vectx=4,
vecty=6,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
value(
vectx=6,
vecty=8,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
value(
vectx=8,
vecty=10,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
value(
vectx=10,
vecty=12,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
value(
vectx=12,
vecty=14,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
value(
vectx=14,
vecty=16,
samplelist=samplelist,
dictA=dictA,
FragmentSize=FragmentSize,
chromosomesizes=chromosomesizes,
),
)
print("starting multiprocessing")
if __name__ == "__main__":
with Pool(4) as p:
result = p.map(Main, SampleValues)
Allmutationdata = []
for i in result:
for b in i:
Allmutationdata.append(b)
excelcreation(Allmutationdata, samplelist, 0, 16, FragmentSize, A, B)
print("My program took " + str(time.time() - start_time) + " to run")
所以程序运行不是问题,问题在于运行时间,任何人都可以发现我的代码可能有错误的任何地方。
答案 0 :(得分:1)
这篇文章How to make your pandas loop run 72,000x faster确实引起了我的共鸣,希望对您有帮助。
它提供了有关如何vectorize
for循环以大幅度加快速度的明确说明
加快For Loop
的方法:
利用熊猫iterrows()
快约321倍
示例
for index, row in dataframe.iterrows():
print(index, row)
熊猫矢量化
快约9280倍
示例
df.loc[((col1 == val1) & (col2 == val2)), column_name] = conditional_result
Numpy矢量化
快约72,000倍
示例
df.loc[((col1.values == val1) & (col2.values == val2)), column_name] = conditional_result
通过添加.values
,我们得到一个numpy数组。
计时结果的信用goes to this article