我有一个自定义remove_action( 'woocommerce_before_single_product', 'woocommerce_output_all_notices', 10 );
,它仅使用TF运算符进行某种位解包(将整数转换为布尔值(0或1浮点数))。
public void setFocus(float x, float y){
double angle1 = Math.atan2(tanks.get(currentTank).getyPos() - tanks.get(currentTank).getyPos() -100, tanks.get(currentTank).getxPos() - tanks.get(currentTank).getxPos());
System.out.println(angle1);
double angle2 = Math.atan2(y - tanks.get(currentTank).getyPos(), x - tanks.get(currentTank).getxPos());
System.out.println(angle2);
double angle = angle1-angle2;
angle = angle +90;
System.out.println(angle);
tanks.get(currentTank).setRotation(angle);
}
我试图对这一层进行基准测试,以改善时间性能,如TF guide所示。
tf.keras.layers.Layer
class CharUnpack(keras.layers.Layer):
def __init__(self, name="CharUnpack", *args, **kwargs):
super(CharUnpack, self).__init__(trainable=False, name=name, *args, **kwargs)
# Range [7, 6, ..., 0] to bit-shift integers
self._shifting_range = tf.reshape(
tf.dtypes.cast(
tf.range(7, -1, -1, name='shifter_range'),
tf.uint8,
name='shifter_cast'),
(1, 1, 8),
name='shifter_reshape')
# Constant value 0b00000001 to use as bitwise and operator
self._selection_bit = tf.constant(0x01, dtype=tf.uint8, name='and_selection_bit')
def call(self, inputs):
return tf.dtypes.cast(
tf.reshape(
tf.bitwise.bitwise_and(
tf.bitwise.right_shift(
tf.expand_dims(inputs, 2),
self._shifting_range,
),
self._selection_bit,
),
[x if x else -1 for x in self.compute_output_shape(inputs.shape)]
),
tf.float32
)
def compute_output_shape(self, input_shape):
try:
if len(input_shape) > 1:
output_shape = tf.TensorShape(tuple(list(input_shape[:-1]) + [input_shape[-1] * 8]))
else:
output_shape = tf.TensorShape((input_shape[0] * 8,))
except TypeError:
output_shape = input_shape
return output_shape
def compute_output_signature(self, input_signature):
return tf.TensorSpec(self.compute_output_shape(input_signature.shape), tf.float32)
如您所见,我的速度提高了10倍!!!
因此,我在inputs = tf.zeros([64, 400], dtype=tf.uint8)
eager = CharUnpack()
@tf.function
def fun(x):
eager(x)
# Warm-up
eager(inputs)
fun(inputs)
print("Function:", timeit.timeit(lambda: fun(inputs), number=100))
print("Eager:", timeit.timeit(lambda: eager(inputs), number=100))
方法中添加了Function: 0.01062483999885444
Eager: 0.12658399900101358
装饰器:
@tf.function
现在我希望CharUnpack.call
和+ @tf.function
def call(self, inputs):
return tf.dtypes.cast(
的通话时间都差不多,但是我没有任何改善。
eager
此外,此SO answer的2.1节指出,默认情况下,模型是图形编译的(应该是逻辑的),但这似乎并非如此...
如何正确使用fun
装饰器使我的图层始终进行图形编译?