我想继承一个顺序模型,以便能够编写自定义call()
并处理命名输入。但是,对我来说,__init__
函数的很小改动已经带来了一些意外的行为。如果我尝试在子类中添加新成员并在调用super().__init__()
之后对其进行初始化,则该模型将无法自动构建。
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Activation, MaxPooling2D, Dense, Flatten
import tensorflow as tf
class Sequential2(Sequential):
def __init__(self):
super(Sequential2, self).__init__()
self.custom_member = []
def get_my_custom_member(self):
return self.custom_member
model = Sequential2()
if tf.keras.backend.image_data_format() == 'channels_first':
input_shape = (1, 28, 28)
else:
assert tf.keras.backend.image_data_format() == 'channels_last'
input_shape = (28, 28, 1)
layers = [Conv2D(32, (3, 3), input_shape=input_shape)]
for layer in layers:
model.add(layer)
model.add(Dense(10))
model.add(Activation('relu'))
model.summary()
失败,输出:ValueError: This model has not yet been built. Build the model first by calling `build()` or calling `fit()` with some data, or specify an `input_shape` argument in the first layer(s) for automatic build.
但是,如果忽略了self.custom_member = []
,则会按预期运行。
我在这里想念什么? (已使用Tensorflow 1.14测试)
答案 0 :(得分:1)
此问题已在 TF 2.2
中修复。您可以参考如下所示的工作代码
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Activation, MaxPooling2D, Dense, Flatten
import tensorflow as tf
print(tf.__version__)
class Sequential2(Sequential):
def __init__(self):
super(Sequential2, self).__init__()
self.custom_member = []
def get_my_custom_member(self):
return self.custom_member
model = Sequential2()
if tf.keras.backend.image_data_format() == 'channels_first':
input_shape = (1, 28, 28)
else:
assert tf.keras.backend.image_data_format() == 'channels_last'
input_shape = (28, 28, 1)
layers = [Conv2D(32, (3, 3), input_shape=input_shape)]
for layer in layers:
model.add(layer)
model.add(Dense(10))
model.add(Activation('relu'))
model.summary()
输出:
2.2.0
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
dense (Dense) (None, 26, 26, 10) 330
_________________________________________________________________
activation (Activation) (None, 26, 26, 10) 0
=================================================================
Total params: 650
Trainable params: 650
Non-trainable params: 0
_________________________________________________________________