每个图像的输入大小为(174, 300, 1)
,总共有1200个输入图像。我正在尝试在一个类中构建模型,如下所示:
from keras import Model
from keras.engine.input_layer import Input
from keras.layers import Convolution2D,MaxPooling2D,Lambda
from keras.layers import Dense
from keras.layers.core import Activation,Flatten,Dropout
from keras.optimizers import Adam
from keras.layers.normalization import BatchNormalization
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1=Convolution2D(filters=8,kernel_size=8,padding='same')
self.batch_norm1=BatchNormalization()
self.activation1=Activation('relu')
self.conv2=Convolution2D(filters=16,kernel_size=8,activation='relu',padding='same')
self.batch_norm2=BatchNormalization()
self.activation2=Activation('relu')
self.MaxPooling2D=MaxPooling2D(pool_size =(2, 2))
self.Dropout=Dropout(0.5)
self.Flatten=Flatten()
self.dense1=Dense(16,activation='relu')
self.dense2=Dense(1,kernel_regularizer=regularizers.l2(0.4))
def call(self,x):
input_size=Input(shape=(1200,174,320,1))
x = Lambda(lambda x:x[0,:,:])(input_size)
x=self.conv1(x)
x=self.batch_norm1(x)
x=self.activation1(x)
x=self.conv2(x)
x=self.batch_norm2(x)
x=self.activation2(x)
x=self.MaxPooling2D(x)
x=self.Dropout(x)
x=self.Flatten(x)
x=self.dense1(x)
x=self.dense2(x)
x=Model(input_size,x)
return x
model=MyModel()
adam=Adam(learning_rate=1e-4)
model.compile(optimizer=adam,loss="mse")
model.fit((x_train, y_train), epochs=50, batch_size=8,validation_split=0.1)
但是我得到了这个错误:
AttributeError: 'Model' object has no attribute 'shape'