我是Tensorflow的新手,我想使用tf.concat,所以我使用了这种布局,而不是常规的顺序布局。但是我得到的错误是AttributeError:'tuple'对象没有属性'layer' 错误出现在第二行
inp = Input(shape=(1050,1050,3))
x1= layers.Conv2D(16 ,(3,3), activation='relu')(inp)
x1= layers.Conv2D(32,(3,3), activation='relu')(x1)
x1= layers.MaxPooling2D(2,2)(x1)
x2= layers.Conv2D(32,(3,3), activation='relu')(x1)
x2= layers.Conv2D(64,(3,3), activation='relu')(x2)
x2= layers.MaxPooling2D(3,3)(x2)
x3= layers.Conv2D(64,(3,3), activation='relu')
x3= layers.Conv2D(64,(2,2), activation='relu')(x3)
x3= layers.Conv2D(64,(3,3), activation='relu')(x3)
x3= layers.Dropout(0.2)(x3)
x3= layers.MaxPooling2D(2,2)(x3)
x4= layers.Conv2D(64,(3,3), activation='relu')
x4= layers.MaxPooling2D(2,2)(x4)
x = layers.Dropout(0.2)(x4)
o = layers.Concatenate(axis=3)([x1, x2, x3, x4, x])
y = layers.Flatten()(o)
y = layers.Dense(1024, activation='relu')(y)
y = layers.Dense(5, activation='softmax')(y)
model = Model(inp, y)
model.summary()
model.compile(loss='sparse_categorical_crossentropy',optimizer=RMSprop(lr=0.001),metrics=['accuracy'])
导入的文件是
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import pandas as pd
import shutil
import csv
import tensorflow as tf
import keras_preprocessing
from keras_preprocessing import image
from keras_preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras import layers
from tensorflow.keras import Model
from keras.layers import Input
错误是
AttributeError Traceback (most recent call last)
<ipython-input-8-40840424e579> in <module>
1 inp = Input(shape=(1050,1050,3))
----> 2 x1= layers.Conv2D(16 ,(3,3), activation='relu')(inp)
3 x1= layers.Conv2D(32,(3,3), activation='relu')(x1)
4 x1= layers.MaxPooling2D(2,2)(x1)
5 x2= layers.Conv2D(32,(3,3), activation='relu')(x1)
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
661 kwargs.pop('training')
662 inputs, outputs = self._set_connectivity_metadata_(
--> 663 inputs, outputs, args, kwargs)
664 self._handle_activity_regularization(inputs, outputs)
665 self._set_mask_metadata(inputs, outputs, previous_mask)
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in _set_connectivity_metadata_(self, inputs, outputs, args, kwargs)
1706 kwargs.pop('mask', None) # `mask` should not be serialized.
1707 self._add_inbound_node(
-> 1708 input_tensors=inputs, output_tensors=outputs, arguments=kwargs)
1709 return inputs, outputs
1710
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in _add_inbound_node(self, input_tensors, output_tensors, arguments)
1793 """
1794 inbound_layers = nest.map_structure(lambda t: t._keras_history.layer,
-> 1795 input_tensors)
1796 node_indices = nest.map_structure(lambda t: t._keras_history.node_index,
1797 input_tensors)
/opt/conda/lib/python3.6/site-packages/tensorflow/python/util/nest.py in map_structure(func, *structure, **kwargs)
513
514 return pack_sequence_as(
--> 515 structure[0], [func(*x) for x in entries],
516 expand_composites=expand_composites)
517
/opt/conda/lib/python3.6/site-packages/tensorflow/python/util/nest.py in <listcomp>(.0)
513
514 return pack_sequence_as(
--> 515 structure[0], [func(*x) for x in entries],
516 expand_composites=expand_composites)
517
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in <lambda>(t)
1792 `call` method of the layer at the call that created the node.
1793 """
-> 1794 inbound_layers = nest.map_structure(lambda t: t._keras_history.layer,
1795 input_tensors)
1796 node_indices = nest.map_structure(lambda t: t._keras_history.node_index,
AttributeError: 'tuple' object has no attribute 'layer'
请任何人告诉我该怎么做 密码与以前相比变化不大,请再次查看
答案 0 :(得分:2)
您忘了在第四行中将x2作为输入参数传递给x3和x4。所以不用写
x2= layers.Conv2D(32,(3,3), activation='relu')
您应该拥有
x2= layers.Conv2D(32,(3,3), activation='relu')(x1)
答案 1 :(得分:1)
您需要实例化Input
层以将输入提供给第一层:
inp = Input(shape=(1050,1050,3))
x1= layers.Conv2D(16 ,(3,3), activation='relu')(inp)
x1= layers.Conv2D(32,(3,3), activation='relu')(x1)
x1= layers.MaxPooling2D(2,2)(x1)
x2= layers.Conv2D(32,(3,3), activation='relu')(x1)
x2= layers.Conv2D(64,(3,3), activation='relu')(x2)
x2= layers.MaxPooling2D(3,3)(x2)
x3= layers.Conv2D(64,(3,3), activation='relu')(x2)
x3= layers.Conv2D(64,(2,2), activation='relu')(x3)
x3= layers.Conv2D(64,(3,3), activation='relu')(x3)
x3= layers.Dropout(0.2)(x3)
x3= layers.MaxPooling2D(2,2)(x3)
x4= layers.Conv2D(64,(3,3), activation='relu')(x3)
x4= layers.MaxPooling2D(2,2)(x4)
x = layers.Dropout(0.2)(x4)
o = layers.Concatenate(axis=3)([x1, x2, x3, x4, x])
y = layers.Flatten()(o)
y = layers.Dense(1024, activation='relu')(y)
y = layers.Dense(5, activation='softmax')(y)
model = Model(inp, y)
model.summary()
model.compile(loss='sparse_categorical_crossentropy',optimizer=RMSprop(lr=0.001),metrics=['accuracy'])
如另一个答案中所述,您也没有将正确的输入传递给Conv2D
层之一。而且您不能直接在Keras张量上使用tf
函数,因为Keras已经具有执行连接的层。