预测结果误差是否比相同训练集的训练误差大得多?

时间:2019-10-02 09:30:29

标签: python machine-learning

我训练了用于医学图像分割的CNN模型。 我跑了150个纪元,最后表明使用dice_coef占了92%,这似乎不错。但是,在进行真正的预测时,使用dice_coef发现不到1%。为了检查它是否过拟合,我使用了相同的训练集进行预测,结果仍然很差。该模型根本不起作用。但是我不明白为什么火车损失很好。代码显示如下。

const BookSchema = new mongoose.Schema({
    title: String,
    authors: [String],
    edition: Number,
    year: Number,
}, {
    _id: false,
});

const MySchema = new mongoose.Schema({
    books: [BookSchema],
});

enter image description here

    # Metric function
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)

# Loss funtion
def dice_coef_loss(y_true, y_pred):
    return -dice_coef(y_true, y_pred)

def get_unet(IMG_WIDTH=256,IMG_HEIGHT=256,IMG_CHANNELS=1):
    inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
    s = Lambda(lambda x: x / 1) (inputs)
    c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (inputs)
    c1 = Dropout(0.1) (c1)
    c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c1)
    p1 = MaxPooling2D((2, 2)) (c1)
    c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p1)
    c2 = Dropout(0.1) (c2)
    c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c2)
    p2 = MaxPooling2D((2, 2)) (c2)

    c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p2)
    c3 = Dropout(0.2) (c3)
    c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c3)
    p3 = MaxPooling2D((2, 2)) (c3)

    c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p3)
    c4 = Dropout(0.2) (c4)
    c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c4)
    p4 = MaxPooling2D(pool_size=(2, 2)) (c4)

    c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p4)
    c5 = Dropout(0.3) (c5)
    c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c5)

    u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same') (c5)
    u6 = concatenate([u6, c4])
    c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u6)
    c6 = Dropout(0.2) (c6)
    c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c6)

    u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c6)
    u7 = concatenate([u7, c3])
    c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u7)
    c7 = Dropout(0.2) (c7)
    c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c7)

    u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c7)
    u8 = concatenate([u8, c2])
    c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u8)
    c8 = Dropout(0.1) (c8)
    c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c8)

    u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c8)
    u9 = concatenate([u9, c1], axis=3)
    c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u9)
    c9 = Dropout(0.1) (c9)
    c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c9)

    outputs = Conv2D(1, (1, 1), activation='sigmoid') (c9)

    model = Model(inputs=[inputs], outputs=[outputs])
    model.compile(optimizer='adam',loss='binary_crossentropy', metrics=[dice_coef])
    return model

u_net = get_unet()
u_net.fit(train_set,train_traget,batch_size=16,epochs=150)

0.005191509794539865

有预测和真实图像: enter image description here enter image description here

0 个答案:

没有答案