Sklearn标准洁牙机

时间:2019-09-29 15:47:19

标签: python scikit-learn

我对Standard Scaler有问题。

编码标签后,我得到了数字数据,但显示了此错误

  

回溯(最近通话最近):     文件“ c:\ Users \ barte.vscode \ extensions \ ms-python.python-2019.9.34911 \ pythonFiles \ ptvsd_launcher.py”,第43行,在       主要(ptvsdArgs)     主文件432行中的文件“ c:\ Users \ barte.vscode \ extensions \ ms-python.python-2019.9.34911 \ pythonFiles \ lib \ python \ ptvsd__main __。py”       跑()     在run_file中的第316行,文件“ c:\ Users \ barte.vscode \ extensions \ ms-python.python-2019.9.34911 \ pythonFiles \ lib \ python \ ptvsd__main __。py''       runpy.run_path(target,run_name ='主要')     文件“ C:\ Users \ barte \ AppData \ Local \ Programs \ Python \ Python36 \ Lib \ runpy.py”,行263,在run_path中       pkg_name = pkg_name,script_name = fname)     文件“ C:\ Users \ barte \ AppData \ Local \ Programs \ Python \ Python36 \ Lib \ runpy.py”,第96行,_run_module_code       mod_name,mod_spec,pkg_name,script_name)     文件“ C:\ Users \ barte \ AppData \ Local \ Programs \ Python \ Python36 \ Lib \ runpy.py”,第85行,_run_code       exec(代码,run_globals)     文件“ c:\ Users \ barte \ Desktop \ Projects \ tf \ adullt UCI数据集\ model.py”,第93行,在       数据[标签] = StandardScaler()。fit_transform(数据[标签])     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ sklearn \ base.py”,第553行,在fit_transform中       返回self.fit(X,** fit_params).transform(X)     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ sklearn \ preprocessing \ data.py”,行639,适合
      返回self.partial_fit(X,y)     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ sklearn \ preprocessing \ data.py”,第663行,partial_fit       force_all_finite ='allow-nan')     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ sklearn \ utils \ validation.py”,第496行,位于check_array
      array = np.asarray(array,dtype = dtype,order = order)     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ numpy \ core_asarray.py”,行85,格式为       返回数组(a,dtype,copy = False,order = order)     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ pandas \ core \ series.py”,第948行,位于数组中       返回np.asarray(self.array,dtype)     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ numpy \ core_asarray.py”,行85,格式为       返回数组(a,dtype,copy = False,order = order)     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ pandas \ core \ arrays \ numpy_.py”,行166,位于 array
      返回np.asarray(self._ndarray,dtype = dtype)     文件“ C:\ Users \ barte \ Desktop \ Projects \ tf \ env \ lib \ site-packages \ numpy \ core_asarray.py”,行85,格式为       返回数组(a,dtype,copy = False,order = order)   ValueError:无法将字符串转换为float:'Other-service

label = 'occupation'

temp_values = data[[label,'50']].groupby(label).mean()

temp_values = temp_values.to_dict()['50']
print(temp_values)

for index,row in enumerate(data[label]):

    data[label][index] = temp_values[row]



data[label] = StandardScaler().transform(data[label])

print(data[label])

只是:     打印(数据[标签]) 给出:

0         0.133835
1          0.48522
2        0.0614815
3        0.0614815
4         0.448489
           ...
30102     0.124619
30105    0.0410959
30110     0.448489
30156     0.326087
30158     0.124619

我正在使用此数据集https://archive.ics.uci.edu/ml/datasets/Adult

感谢帮助

0 个答案:

没有答案