计算矩阵列上的分位数

时间:2019-09-27 23:52:36

标签: r dataframe matrix dplyr

对于给定的矩阵,我需要通过分组变量跟踪每列的分位数值。具体来说,我想按“同类群组结构”对输出进行分组。然后,对于第1列至第5列,我想针对每个分组变量计算第25个,均值和第75个百分位数。这意味着我的输出矩阵将为9 x 5,即每个同类群组结构= 1排3行,同类群组结构= 2排3行,同类群组结构= 3排3行,分别对应于第25个平均值和第75个百分位数。

示例:

test.mat <- data.frame(matrix(nrow = 11, ncol =6))
colnames(test.mat)[[6]] = "Cohort Structure"
test.mat[,6]= c(1,1,1,1,1,1,2,2,3,3,3)
test.mat[1:11,4:5] <- rnorm(11*2,0,1)
test.mat[11, 5] <- NA
test.mat[1:3,1:3] <- rnorm(9,0,1)

           X1        X2          X3         X4          X5 Cohort Structure
1  0.09529937 1.0140776 -0.45203406 -0.6585827  0.57117571                1
2  0.94442513 0.5777710  0.08588911 -0.3674672  0.01383938                1
3  1.47881362 0.4370171 -0.37843416 -1.2634002  0.58010696                1
4          NA        NA          NA  0.2844687  0.83113773                1
5          NA        NA          NA  0.8661393  0.35947394                1
6          NA        NA          NA -1.3685556 -0.71297431                1
7          NA        NA          NA -1.0117586  0.27020197                2
8          NA        NA          NA -0.7746377  0.97250990                2
9          NA        NA          NA -1.4406549  0.05538031                3
10         NA        NA          NA -0.2303378 -0.61625365                3
11         NA        NA          NA -0.1837904          NA                3

所需的输出(输出矩阵)

对于列1:3和行3:9,输出矩阵将为NA。 第1列第1行,第3行将报告同类群组= 1的第25个平均值,第75个百分点值。对于第2列和第3列,将重复此过程。

在第4列和第5列,重复计算每个同类群组结构的第25,均值和第75分位数的过程。计算不包括NA的值。

quantile(test.mat[1:3,1], c(0.25,0.5,0.75))
quantile(test.mat[1:3,2], c(0.25,0.5,0.75))
quantile(test.mat[1:3,3], c(0.25,0.5,0.75))

将是Output Matrix [1:3,1:3]的期望输出

quantile(test.mat[1:6,4], c(0.25,0.5,0.75))

可以将输出矩阵[1:3,4]转换为所需的输出

对于我的实际数据集,我需要将流程应用于具有100列的矩阵

1 个答案:

答案 0 :(得分:1)

我相信使用data.table会产生正确的输出。可能有一种更简洁的编写方法。

library(data.table)
test.mat <- data.table(test.mat)
quantiles <- test.mat[, .(quantile(X1, c(0.25, 0.5, 0.75), na.rm = TRUE), 
                          quantile(X2, c(0.25, 0.5, 0.75), na.rm = TRUE), 
                          quantile(X3, c(0.25, 0.5, 0.75), na.rm = TRUE), 
                          quantile(X4, c(0.25, 0.5, 0.75), na.rm = TRUE), 
                          quantile(X5, c(0.25, 0.5, 0.75), na.rm = TRUE)), 
                       by = 'Cohort Structure']

并添加一些标签,以便我们知道要查看的行:

quantiles[, quantile := c(0.25, 0.5, 0.75)]

输出:

> quantiles
   Cohort Structure        V1         V2         V3         V4          V5 quantile
1:                1 -1.220385 -0.3937794 0.05349869  0.3436015 -0.76662468     0.25
2:                1 -1.127379  0.3001190 0.88924650  0.9198491  0.09188820     0.50
3:                1 -1.013713  0.4744223 1.04911208  1.3364680  0.90340622     0.75
4:                2        NA         NA         NA  0.2912628 -0.20866542     0.25
5:                2        NA         NA         NA  0.2968669 -0.07529148     0.50
6:                2        NA         NA         NA  0.3024710  0.05808246     0.75
7:                3        NA         NA         NA -1.0510155 -0.64431366     0.25
8:                3        NA         NA         NA -0.4571571 -0.24590377     0.50
9:                3        NA         NA         NA  0.1136005  0.15250612     0.75

编辑: 可以处理任意数量列的一种替代方法是:

quantiles <- test.mat[ , lapply(.SD, quantile, c(0.25, 0.5, 0.75), na.rm = TRUE), by = 'Cohort Structure']
quantiles[, quantile := c(0.25, 0.5, 0.75)]

输出仍然一致:

> quantiles
   Cohort Structure         X1       X2         X3         X4          X5 quantile
1:                1 -0.7882032 1.026384 -1.1975511 -0.8922598 -0.14365438     0.25
2:                1 -0.5700479 1.053239 -0.7222268  0.4451031  0.03217004     0.50
3:                1  0.3405146 1.282465 -0.5917531  0.9224831  0.24087650     0.75
4:                2         NA       NA         NA  0.3324551  0.97672542     0.25
5:                2         NA       NA         NA  0.7927529  1.03910678     0.50
6:                2         NA       NA         NA  1.2530508  1.10148814     0.75
7:                3         NA       NA         NA -0.3269997  0.51067050     0.25
8:                3         NA       NA         NA  0.4094524  0.55328059     0.50
9:                3         NA       NA         NA  0.6502998  0.59589067     0.75