我有以下numpy矩阵:
0 1 2 3 4 5 6 7 8 9
0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 5.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 7.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 5.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0
8 2.0 0.0 0.0 0.0 3.0 0.0 6.0 0.0 8.0 0.0
9 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
我想分别计算每行和每列的非零值。所以我的结果应该是这样的:
average_rows = [1.0,7.0,2.0,5.0,0.0,4.0,0.0,5.5,4.75,1.0,0.0]
average_cols = [3.5,1.0,4.33333,0.0,4.33333,0.0,4.0,6.0,6.5,0.0]
我无法弄清楚如何迭代它们,并且我不断获得TypeError: unhashable type
此外,我不确定迭代是否是最佳解决方案,我也尝试使用R[:,i]
来抓取每一列并使用sum(R[:,i])
对其进行求和,但仍然会遇到相同的错误。
答案 0 :(得分:1)
最好使用2d np.array
而不是矩阵。
import numpy as np
data = np.array([[1, 2, 0], [0, 0, 1], [0, 2, 4]], dtype='float')
data[data == 0] = np.nan
# replace all zeroes with `nan`'s to skip them
# [[ 1. 2. nan]
# [ nan nan 1.]
# [ nan 2. 4.]]
np.nanmean(data, axis=0)
# array([ 1. , 2. , 2.5])
np.nanmean(data, axis=1)
# array([ 1.5, 1. , 3. ])