我已经绘制了几天内相对湿度的线性回归散点图。 给定的天数是244。 现在我应该可以预测第245天的相对湿度值。
->这是数据集的样本值。
相对湿度
0 78.80
1 80.80
2 78.60
3 76.10
4 73.85
5 71.40
x=linear.index
y=linear["RH"]
plt.title('Air Temperature vs. Relative Humidity')
plt.title(' Relative Humidity over Days')
plt.ylabel('Relative Humidity')
plt.xlabel('Days')
fit = np.polyfit(x,y,1)
fit_fn = np.poly1d(fit)
reg= plt.plot(x,y, 'yo', x, fit_fn(x), '--k')
reg
from sklearn.linear_model import LinearRegression
regr = LinearRegression()
regr.fit(linear[["RH"]],linear.index)
regr.predict(linear[245])
由于我已经尝试了几种不同的方法和代码,但似乎都无法正常工作,错误通常出现在“列表对象没有属性“预测””之中。
答案 0 :(得分:1)
这是一个图形化Python多项式拟合器,使用numpy.polyfit()进行拟合,并使用numpy.polyval()进行评估,并且此示例包括一个值。多项式阶数设置在代码的顶部,对于直线,可以将其设置为“ 1”。
import numpy, matplotlib
import matplotlib.pyplot as plt
xData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.0, 6.6, 7.7, 0.0])
yData = numpy.array([1.1, 20.2, 30.3, 40.4, 50.0, 60.6, 70.7, 0.1])
polynomialOrder = 2 # example quadratic equation
# curve fit the test data
fittedParameters = numpy.polyfit(xData, yData, polynomialOrder)
print('Fitted Parameters:', fittedParameters)
# predict a single value
print('Single value prediction:', numpy.polyval(fittedParameters, 3.0))
# Use polyval to find model predictions
modelPredictions = numpy.polyval(fittedParameters, xData)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = numpy.polyval(fittedParameters, xModel)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_title('numpy.polyval example') # add a title
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)