Keras-CNN-调整数据集-删除有偏见的类别和数据扩充尝试

时间:2019-09-26 19:08:20

标签: python tensorflow keras deep-learning data-augmentation

基于流行的皮肤癌图像数据集,我正在开发的模型存在困境。 我必须指出一些我想要的指导-

A。

原始数据集超过10K张图像,其中近7000张图像属于七个类别之一。我创建了一个4948个随机图像的子集,使用该子集,我运行了一个将图像转换为列表列表的功能-第一个列表包含该图像,后一个列表为该类,并关闭所有属于该类的图像(5- + 6800K图片)。思想过程是使各班级的分布正常化。

重新运行带有输出的原始模型(6个神经元而不是7个神经元的密集层)-检索错误。

我是否缺少一个步骤来“指示”模型只有六个可能的类?该模型仅在输出层具有七个神经元时运行。

错误:

Train on 1245 samples, validate on 312 samples
Epoch 1/30
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-138-8a3b40a69e37> in <module>
     25              metrics=["accuracy"])
     26 
---> 27 model.fit(X_train, y_train, batch_size=32, epochs=30, validation_split=0.2)

/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
    778           validation_steps=validation_steps,
    779           validation_freq=validation_freq,
--> 780           steps_name='steps_per_epoch')
    781 
    782   def evaluate(self,

/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training_arrays.py in model_iteration(model, inputs, targets, sample_weights, batch_size, epochs, verbose, callbacks, val_inputs, val_targets, val_sample_weights, shuffle, initial_epoch, steps_per_epoch, validation_steps, validation_freq, mode, validation_in_fit, prepared_feed_values_from_dataset, steps_name, **kwargs)
    361 
    362         # Get outputs.
--> 363         batch_outs = f(ins_batch)
    364         if not isinstance(batch_outs, list):
    365           batch_outs = [batch_outs]

/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/backend.py in __call__(self, inputs)
   3290 
   3291     fetched = self._callable_fn(*array_vals,
-> 3292                                 run_metadata=self.run_metadata)
   3293     self._call_fetch_callbacks(fetched[-len(self._fetches):])
   3294     output_structure = nest.pack_sequence_as(

/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
   1456         ret = tf_session.TF_SessionRunCallable(self._session._session,
   1457                                                self._handle, args,
-> 1458                                                run_metadata_ptr)
   1459         if run_metadata:
   1460           proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

InvalidArgumentError: Received a label value of 6 which is outside the valid range of [0, 6).  Label values: 1 1 2 4 2 1 2 1 2 1 2 2 4 2 2 1 3 1 4 6 0 2 4 2 0 4 2 4 4 0 2 4
     [[{{node loss_15/activation_63_loss/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]]

B。

我正在尝试添加数据增强,因为考虑到类别的数量以及各个类别中图像的稀疏性,数据集相对较小。尝试运行生成器后,我收到以下错误消息,提示validation_data元组中的变量之一有问题。我不明白问题是什么。

测试集的示例值如下:

[[[[0.41568627]
   [0.4       ]
   [0.43137255]
   ...
   [0.54509804]
   [0.54901961]
   [0.54509804]]

  [[0.42352941]
   [0.43137255]
   [0.43921569]
   ...
   [0.56078431]
   [0.54117647]
   [0.55294118]]

  [[0.41960784]
   [0.41960784]
   [0.45490196]
   ...
   [0.51764706]
   [0.57254902]
   [0.50588235]]

  ...

  [[0.30980392]
   [0.36470588]
   [0.36470588]
   ...
   [0.47058824]
   [0.44705882]
   [0.41960784]]

  [[0.29803922]
   [0.31764706]
   [0.34509804]
   ...
   [0.45098039]
   [0.43921569]
   [0.4       ]]

  [[0.25882353]
   [0.30196078]
   [0.31764706]
   ...
   [0.45490196]
   [0.42745098]
   [0.36078431]]]


 [[[0.60784314]
   [0.59215686]
   [0.56862745]
   ...
   [0.59607843]
   [0.63921569]
   [0.63529412]]

  [[0.6627451 ]
   [0.63137255]
   [0.62352941]
   ...
   [0.67843137]
   [0.60784314]
   [0.63529412]]

  [[0.62745098]
   [0.65098039]
   [0.6       ]
   ...
   [0.61568627]
   [0.63921569]
   [0.67058824]]

  ...

  [[0.62352941]
   [0.6       ]
   [0.59607843]
   ...
   [0.6627451 ]
   [0.71372549]
   [0.6745098 ]]

  [[0.61568627]
   [0.58431373]
   [0.61568627]
   ...
   [0.67058824]
   [0.65882353]
   [0.68235294]]

  [[0.61176471]
   [0.60392157]
   [0.61960784]
   ...
   [0.65490196]
   [0.6627451 ]
   [0.66666667]]]]

[2, 1, 4, 4, 2]

错误:

Epoch 1/10
  1/155 [..............................] - ETA: 11s - loss: 1.7916 - acc: 0.3000
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-139-8f19a958861f> in <module>
     12 history = model.fit_generator(trainAug.flow(X_train, y_train, batch_size=batch_size)                           
     13                              ,epochs = 10, validation_data = (X_test, y_test),
---> 14                               steps_per_epoch= X_train.shape[0]// batch_size
     15                              )
     16 #epochs = epochs, validation_data = (X_test, y_test),

/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
   1431         shuffle=shuffle,
   1432         initial_epoch=initial_epoch,
-> 1433         steps_name='steps_per_epoch')
   1434 
   1435   def evaluate_generator(self,

/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training_generator.py in model_iteration(model, data, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch, mode, batch_size, steps_name, **kwargs)
    262 
    263       is_deferred = not model._is_compiled
--> 264       batch_outs = batch_function(*batch_data)
    265       if not isinstance(batch_outs, list):
    266         batch_outs = [batch_outs]

/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in train_on_batch(self, x, y, sample_weight, class_weight, reset_metrics)
   1173       self._update_sample_weight_modes(sample_weights=sample_weights)
   1174       self._make_train_function()
-> 1175       outputs = self.train_function(ins)  # pylint: disable=not-callable
   1176 
   1177     if reset_metrics:

/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/backend.py in __call__(self, inputs)
   3290 
   3291     fetched = self._callable_fn(*array_vals,
-> 3292                                 run_metadata=self.run_metadata)
   3293     self._call_fetch_callbacks(fetched[-len(self._fetches):])
   3294     output_structure = nest.pack_sequence_as(

/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
   1456         ret = tf_session.TF_SessionRunCallable(self._session._session,
   1457                                                self._handle, args,
-> 1458                                                run_metadata_ptr)
   1459         if run_metadata:
   1460           proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

InvalidArgumentError: Received a label value of 6 which is outside the valid range of [0, 6).  Label values: 0 1 6 4 2 4 2 0 1 2
     [[{{node loss_15/activation_63_loss/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]]

代码:

import tensorflow as tf
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D

        import numpy as np
        import pandas as pd

        import matplotlib.pyplot as plt

        import sys
        import os
        import cv2

        DATA_DIR = "/Users/namefolder/PycharmProjects/skin-cancer/HAM10000_images_part_1"

        metadata = pd.read_csv(os.path.join(DATA_DIR, 'HAM10000_metadata.csv'))

        lesion_type_dict = {'nv': 'Melanocytic nevi',
            'mel': 'Melanoma',
            'bkl': 'Benign keratosis-like lesions ',
            'bcc': 'Basal cell carcinoma',
            'akiec': 'Actinic keratoses',
            'vasc': 'Vascular lesions',
            'df': 'Dermatofibroma'}

        metadata['cell_type'] = metadata['dx'].map(lesion_type_dict.get)
        metadata['dx_code'] = pd.Categorical(metadata['dx']).codes

        # save array of image-id and diagnosis-type (categorical)
        metadata = metadata[['image_id', 'dx', 'dx_type', 'dx_code']]

        training_data = []

        IMG_SIZE=50

        # preparing training data

        def creating_training_data(path):
            for img in os.listdir(path):
                try:
                    img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
                    new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
                    for index, row in metadata.iterrows():
                        if (img == row['image_id']+'.jpg') & (row['dx_code'] != 5):
                            try:
                                training_data.append([new_array, row['dx_code']])
                            except Exception as ee:
                                pass
                except Exception as e:
                    pass

            return training_data

        training_data = creating_training_data(DATA_DIR)

        import random

        random.shuffle(training_data)

        # Splitting data into X features and Y label
        X_train = []
        y_train = []
        for features, label in training_data:
            X_train.append(features)
            y_train.append(label)

        # Reshaping of the data - required by Tensorflow and Keras (*necessary step of deep-learning using these repos)
        X_train = np.array(X_train).reshape(-1, IMG_SIZE, IMG_SIZE, 1)

        # Normalize data - to reduce processing requirements
        X_train = X_train/255.0

        # model configuration
        model = Sequential()
        model.add(Conv2D(64, (3,3), input_shape = X_train.shape[1:]))
        model.add(Activation("relu"))
        model.add(MaxPooling2D(pool_size=(2, 2)))

        model.add(Conv2D(64, (3,3)))
        model.add(Activation("relu"))
        model.add(MaxPooling2D(pool_size=(2, 2)))

        model.add(Flatten())
        model.add(Dense(64))

        model.add(Dense(6))
        model.add(Activation("softmax"))

        model.compile(loss="mean_squared_error",
                     optimizer="adam",
                     metrics=["accuracy"])

    # Data Augmentation - Repo enabler
    from keras.preprocessing.image import ImageDataGenerator
    from keras.callbacks import ReduceLROnPlateau

    # initialize the training training data augmentation object
    trainAug = ImageDataGenerator(
        rescale=1 / 255.0,
        rotation_range=20,
        zoom_range=0.05,
        width_shift_range=0.05,
        height_shift_range=0.05,
        shear_range=0.05,
        horizontal_flip=True,
        fill_mode="nearest")

    # initialize the validation (and testing) data augmentation object
    valAug = ImageDataGenerator(rescale=1 / 255.0)

    #set a leraning rate annealer
    learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
                                               patience=3,
                                               verbose=1,
                                               factor=0.5,
                                               min_lr=0.00001)

    #Augmented Images model development
   )

    trainAug.fit(X_train)

    #Fit the model
    epochs = 10
    batch_size= 10

    history = model.fit_generator(trainAug.flow(X_train, y_train, batch_size=batch_size),epochs = 10, validation_data = (X_test, y_test), steps_per_epoch= X_train.shape[0]// batch_size)

1 个答案:

答案 0 :(得分:2)

最初,您有7个标签:您的代码当时期望标签0、1、2、3、4、5、6

您已从数据集中删除标签5,确定。现在您总共有6个标签。
您的代码预期为:0、1、2、3、4、5

但是您数据中包含的是:0、1、2、3、4、6

在删除标签5之后,您需要将标签6转换为5。


以下内容:

if (img == row['image_id']+'.jpg') & (row['dx_code'] > 5):
    try:
        training_data.append([new_array, row['dx_code'] - 1])
    except Exception as ee:
        pass
elif (img == row['image_id']+'.jpg') & (row['dx_code'] < 5):
    try:
        training_data.append([new_array, row['dx_code']])
    except Exception as ee:
        pass