我的模型的损失值缓慢降低。如何在训练时更快地减少损失?

时间:2019-09-26 10:07:25

标签: tensorflow keras neural-network deep-learning nlp

当我训练模型时,损失在2500个时期内从0.9降低到0.5。正常吗

我的模特:

    model = Sequential()

    model.add(Embedding(vocab_size , emd_dim, weights=[emd_matrix], input_length=maxLen,trainable=False))

    model.add(LSTM(256,return_sequences=True,activation="relu",kernel_regularizer=regularizers.l2(0.01),kernel_initializer=keras.initializers.glorot_normal(seed=None)))
    model.add(LSTM(256,return_sequences=True,activation="relu",kernel_regularizer=regularizers.l2(0.01),kernel_initializer=keras.initializers.glorot_normal(seed=None)))

    model.add(LSTM(256,return_sequences=False,activation="relu",kernel_regularizer=regularizers.l2(0.01),kernel_initializer=keras.initializers.glorot_normal(seed=None)))
    model.add(Dense(l_h2i,activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy'])
    filepath = "F:/checkpoints/"+modelname+"/lstm-{epoch:02d}-{loss:0.3f}-{acc:0.3f}-{val_loss:0.3f}-{val_acc:0.3f}.hdf5"
    checkpoint = ModelCheckpoint(filepath, monitor="loss", verbose=1, save_best_only=True, mode='min')
    reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.5, patience=2, min_lr=0.000001)
    print(model.summary())
    history=model.fit(X_train_indices, Y_train_oh, batch_size=batch_size ,
                      epochs=epochs , validation_split=0.1, shuffle=True,
                      callbacks=[checkpoint, reduce_lr])

部分结果如下所示:

loss improved from 0.54275 to 0.54272
loss: 0.5427 - acc: 0.8524 - val_loss: 1.1198 - val_acc: 0.7610

loss improved from 0.54272 to 0.54268
loss: 0.5427 - acc: 0.8525 - val_loss: 1.1195 - val_acc: 0.7311

loss improved from 0.54268 to 0.54251
loss: 0.5425 - acc: 0.8519 - val_loss: 1.1218 - val_acc: 0.7420

loss improved from 0.54251 to 0.54249
loss: 0.5425 - acc: 0.8517 - val_loss: 1.1210 - val_acc: 0.7518

1 个答案:

答案 0 :(得分:0)

请考虑像TensorFlow documentation中那样更新ReduceLROnPlateau参数。因子应该更大,忍耐应该更小

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
                              patience=5, min_lr=0.001)
model.fit(X_train, Y_train, callbacks=[reduce_lr])

参数:

  
      
  • 监控器:要监控的数量。
  •   
  • 因子:学习率降低的因子。 new_lr = lr *因子
  •   
  • 耐心:没有改善的时期数,之后学习率将降低。
  •   
  • verbose:整数。 0:安静,1:更新消息。
  •   
  • 模式:{auto,min,max}之一。在最小模式下,当监视的数量停止减少时,lr将减小;在最大模式下   当监测数量停止增加时减少;在   自动模式,根据名称自动推断方向   监视数量。
  •   min_delta:测量新的最佳阈值,仅关注重大变化。   
  • cooldown:减少lr后恢复正常运行之前要等待的时期数。
  •   
  • min_lr:学习率的下限。
  •