使用Tensorflow object detection training,在FRCNN初始网络v2上进行培训。 培训的配置如下。
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 50000
learning_rate: .00002
}
schedule {
step: 60000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "/home/itc/Data/Cheers_Store/TrainedModels/FRcnnInceptionNet/pretrained/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the COCO dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 70000
训练了70000次迭代,包含30000张图像。
具有3000张图像和设置的评估如下。
eval_config: {
num_examples: 3000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
在训练过程中,它最多训练了4200次迭代。然后继续评估,不再进行培训。可能是什么问题?