Flink:将使用keyBy运算符创建的值的映射广播到另一个流,冷启动问题

时间:2019-09-23 10:15:41

标签: scala apache-flink flink-streaming

我经常发布事件,每个事件都包含有关Car的一些信息。我需要处理此类事件,但要排除具有特定城市和车牌号码组合的事件。有关这些列入黑名单的城市和车牌号组合的信息来自S3文件,该文件每天更新​​一次。

示例:汽车事件如下:

[
    {
        "name": "Car1",
        "plate": "XYZ123",
        "city": "Berlin"
    },
    {
        "name": "Car2",
        "plate": "XYZ1234",
        "city": "Amsterdam"
    },
    {
        "name": "Car3",
        "plate": "ASD 123",
        "city": "Kuala Lumpur"
    },
    {
        "name": "Car1",
        "plate": "XYZ123",
        "city": "Moscow"
    },
    {
        "name": "Car1",
        "plate": "XYZ123",
        "city": "Barcelona"
    }
]

S3文件如下:例如。可以说它叫做excludedCars

[
    {
        "plate": "XYZ123",
        "city": "Berlin"
    },
    {
        "plate": "ABC1231",
        "city": "Berlin"
    },
    {
        "plate": "AWS121",
        "city": "Berlin"
    },
    {
        "plate": "XYZ1234",
        "city": "Amsterdam"
    },
    {
        "plate": "AMC3421",
        "city": "Amsterdam"
    },
    {
        "plate": "ASD 123",
        "city": "Kuala Lumpur"
    },
    {
        "plate": "XYZ123",
        "city": "Moscow"
    },
    {
        "plate": "XYZ123",
        "city": "Barcelona"
    }
]

方法:

  1. 使用S3文件excludedCars作为流式传输源。
  2. 转换事件以产生以下结构:
{
    "Berlin": ["XYZ123", "ABC1231", "AWS121"],
    "Amsterdam": ["XYZ1234", "AMC3421"],
    "Kuala Lumpur":["ASD 123"],
    "Moscow":["XYZ123"],
    "Barcelona":["XYZ123"]
}
  1. 将此流广播到主流(汽车流)。然后使用#2中的信息进行处理。

代码:


object Cars {

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val excludedCarStream: DataStream[Array[ExcludedCarDetail]] = getExcludedCarsStream(env)
    val excludedCarDetails = excludedCarStream.flatMap(item => item) // Array of Excluded Car objects
    excludedCarDetails.map(car => (car.cityId, car.plateNumber)).keyBy(0) // As per my understanding, this should result into a map of city to array of plate number maps 
    excludedCarDetails.print() // This just prints the simple tuples without any grouping by city
    env.execute("Scala SocketTextStreamWordCount Example")
  }

  private def getExcludedCarsStream(env: StreamExecutionEnvironment): DataStream[Array[ExcludedCarDetail]] = {
    val path: String = "file:///Users/name/flinkTest/excluded"
    val textInputFormat = new TextInputFormat(new Path(path))
    env
      .readFile(
        textInputFormat,
        path,
        FileProcessingMode.PROCESS_CONTINUOUSLY,
        1000
      )
      .map(jsonString => {
        val excludedCars: Array[ExcludedCarDetail] = (new Gson).fromJson(jsonString, classOf[Array[ExcludedCarDetail]])
        excludedCars
      })
  }
}

case class ExcludedCarDetail(
  @(SerializedName @scala.annotation.meta.field)("city") cityId: String,
  @(SerializedName @scala.annotation.meta.field)("plate") plateNumber: String
)

据我了解,excludedCarDetails.map(car => (car.cityId, car.plateNumber)).keyBy(0)应该会生成city to array of plate numbers的地图,可以将其广播到我的主流(汽车)中。相反,它只是简单地打印(city, plateNumber)的元组。

我对Flink绝对是新鲜的,并试图掌握和实现概念。请提出我做错了什么以及如何实现所需的行为。

约束:广播地图的结构无法更改。

广播状态解决方案:

object Cars {

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    val excludedCarsState: MapStateDescriptor[Int, List[String]] = new MapStateDescriptor("excludedCars", classOf[Int], classOf[List[String]])
    val excludedCarDetails: DataStream[ExcludedCarDetail] = getExcludedCarsStream(env)
    val excludedCarBroadcast: BroadcastStream[ExcludedCarDetail] = excludedCarDetails.broadcast(excludedCarsState)


    val carsStream: DataStream[CarDetail] = getMainCarsStream(env)

    val bs = carsStream
      .keyBy(_.cityId)
      .connect(excludedCarBroadcast)
      .process(new CarsStateLogic(excludedCarsState))

    bs.print()

    env.execute("Scala SocketTextStreamWordCount Example")
  }

  private def getExcludedCarsStream(env: StreamExecutionEnvironment): DataStream[ExcludedCarDetail] = {
    val cars: ListBuffer[ExcludedCarDetail] = ListBuffer()
    for(i <- 0 until 3) {
      val cityId = i+1
      val plateNumber = "Plate"+(i+1)
      cars += ExcludedCarDetail(cityId, plateNumber) // Basically exclude cars with plate1 in city1, plate2 in city2, plate3 in city3
    }
    env.fromCollection(cars.toList)
  }

  private def getMainCarsStream(env: StreamExecutionEnvironment): DataStream[CarDetail] = {
    val cars: ListBuffer[CarDetail] = ListBuffer()
    for(i <- 0 until 10) {
      val cityId = i+1
      val plateNumber = "Plate"+(i+1)
      val name = "Name"+(i+1)
      cars += CarDetail(cityId, plateNumber, name)
    }
    env.fromCollection(cars.toList)
  }
}

case class ExcludedCarDetail(cityId: Int, plateNumber: String)
case class CarDetail(cityId: Int, plateNumber: String, name: String)

class CarsStateLogic(excludedCarsState: MapStateDescriptor[Int, List[String]]) extends KeyedBroadcastProcessFunction[String, CarDetail, ExcludedCarDetail, CarDetail] {
  override def processElement(car: CarDetail, ctx: KeyedBroadcastProcessFunction[String, CarDetail, ExcludedCarDetail, CarDetail]#ReadOnlyContext, out: Collector[CarDetail]): Unit = {
    val state = ctx.getBroadcastState(excludedCarsState)

    if(state.contains(car.cityId)) {
      val cityState = state.get(car.cityId)
      if(cityState.indexOf(car.plateNumber) < 0) { // not excluded
        out.collect(car)
      }
    } else {
      out.collect(car)
    }
  }

  override def processBroadcastElement(value: ExcludedCarDetail, ctx: KeyedBroadcastProcessFunction[String, CarDetail, ExcludedCarDetail, CarDetail]#Context, out: Collector[CarDetail]): Unit = {
    val state = ctx.getBroadcastState(excludedCarsState)
    val newStateForKey = if(state.contains(value.cityId)) {
      value.plateNumber :: state.get(value.cityId)
    } else {
      List(value.plateNumber)
    }
    ctx.getBroadcastState(excludedCarsState).put(value.cityId, newStateForKey)
    println("BroadCast element: CityId:"+ value.cityId+ ", State: "+state.get(value.cityId))
  }
}

但是我现在遇到了冷启动问题。在处理主要数据之前,确保广播状态可用的可靠方法是什么。

1 个答案:

答案 0 :(得分:1)

如果排除的汽车数据集很小,则可以按原样广播(不按城市分组)。如果很大,则按城市(与汽车流相同)进行键入,并将这两个流连接起来,以便每个子任务仅获得所有排除的汽车和常规汽车数据的分区集。

请注意,您遇到了冷启动问题,您想在处理任何常规汽车数据之前先处理所有当前排除的汽车数据,以免从正在处理的汽车数据中得到误报在收到排除的汽车数据之前。