根据列条目(或排名)子集数据框

时间:2011-04-27 13:55:34

标签: r subset

我有一个像这样简单的data.frame:

id group idu  value
1  1     1_1  34
2  1     2_1  23
3  1     3_1  67
4  2     4_2  6
5  2     5_2  24
6  2     6_2  45
1  3     1_3  34
2  3     2_3  67
3  3     3_3  76

从我想要检索每个组的第一个条目的子集;类似的东西:

id group idu value
1  1     1_1 34
4  2     4_2 6
1  3     1_3 34

id不是唯一的,所以方法不应该依赖它。

我可以实现避免循环吗?

dput()数据:

structure(list(id = c(1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L), group = c(1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L), idu = structure(c(1L, 3L, 5L, 
7L, 8L, 9L, 2L, 4L, 6L), .Label = c("1_1", "1_3", "2_1", "2_3", 
"3_1", "3_3", "4_2", "5_2", "6_2"), class = "factor"), value = c(34L, 
23L, 67L, 6L, 24L, 45L, 34L, 67L, 76L)), .Names = c("id", "group", 
"idu", "value"), class = "data.frame", row.names = c(NA, -9L))

4 个答案:

答案 0 :(得分:10)

使用Gavin的百万行df:

DF3 <- data.frame(id = sample(1000, 1000000, replace = TRUE),
                  group = factor(rep(1:1000, each = 1000)),
                  value = runif(1000000))
DF3 <- within(DF3, idu <- factor(paste(id, group, sep = "_")))

我认为最快的方法是重新排序数据框,然后使用duplicated

system.time({
  DF4 <- DF3[order(DF3$group), ]
  out2 <- DF4[!duplicated(DF4$group), ]
})
# user  system elapsed 
# 0.335   0.107   0.441

相比之下,我的电脑上Gavin的紧固拉伸+分割方法为7秒。

通常,在处理数据框时,最快的方法通常是生成所有索引,然后执行单个子集。

答案 1 :(得分:5)

根据OP的评论更新

如果在百万+行上执行此操作,则所提供的所有选项都将变慢。以下是100,000行虚拟数据集的一些比较时序:

set.seed(12)
DF3 <- data.frame(id = sample(1000, 100000, replace = TRUE),
                  group = factor(rep(1:100, each = 1000)),
                  value = runif(100000))
DF3 <- within(DF3, idu <- factor(paste(id, group, sep = "_")))

> system.time(out1 <- do.call(rbind, lapply(split(DF3, DF3["group"]), `[`, 1, )))
   user  system elapsed 
 19.594   0.053  19.984 
> system.time(out3 <- aggregate(DF3[,-2], DF3["group"], function (x) x[1]))
   user  system elapsed 
 12.419   0.141  12.788 

我放弃了一百万行。更快,不管你信不信,是:

out2 <- matrix(unlist(lapply(split(DF3[, -4], DF3["group"]), `[`, 1,)),
               byrow = TRUE, nrow = (lev <- length(levels(DF3$group))))
colnames(out2) <- names(DF3)[-4]
rownames(out2) <- seq_len(lev)
out2 <- as.data.frame(out2)
out2$group <- factor(out2$group)
out2$idu <- factor(paste(out2$id, out2$group, sep = "_"),
                   levels = levels(DF3$idu))

输出(实际上)相同:

> all.equal(out1, out2)
[1] TRUE
> all.equal(out1, out3[, c(2,1,3,4)])
[1] "Attributes: < Component 2: Modes: character, numeric >"              
[2] "Attributes: < Component 2: target is character, current is numeric >"

out1(或out2)和out3aggregate()版本)之间的差异仅在组件的rownames中。)

时间:

   user  system elapsed 
  0.163   0.001   0.168

关于100,000行问题,以及这一百万行问题:

set.seed(12)
DF3 <- data.frame(id = sample(1000, 1000000, replace = TRUE),
                  group = factor(rep(1:1000, each = 1000)),
                  value = runif(1000000))
DF3 <- within(DF3, idu <- factor(paste(id, group, sep = "_")))

时间

   user  system elapsed 
 11.916   0.000  11.925

使用矩阵版本(生成out2)可以更快地完成其他版本处理100,000行问题的百万行。这只是表明使用矩阵确实非常快,我的do.call()版本的瓶颈是rbind() - 将结果放在一起。

百万行问题时间安排完成:

system.time({out4 <- matrix(unlist(lapply(split(DF3[, -4], DF3["group"]),
                                          `[`, 1,)),
                            byrow = TRUE,
                            nrow = (lev <- length(levels(DF3$group))))
             colnames(out4) <- names(DF3)[-4]
             rownames(out4) <- seq_len(lev)
             out4 <- as.data.frame(out4)
             out4$group <- factor(out4$group)
             out4$idu <- factor(paste(out4$id, out4$group, sep = "_"),
                                levels = levels(DF3$idu))})

<强>原始

如果您的数据位于DF,请说:

do.call(rbind, lapply(with(DF, split(DF, group)), head, 1))

会做你想做的事:

> do.call(rbind, lapply(with(DF, split(DF, group)), head, 1))
  idu group
1   1     1
2   4     2
3   7     3

如果新数据位于DF2,我们会得到:

> do.call(rbind, lapply(with(DF2, split(DF2, group)), head, 1))
  id group idu value
1  1     1 1_1    34
2  4     2 4_2     6
3  1     3 1_3    34

但是对于速度,我们可能想要分组而不是使用head(),我们可以通过不使用with()获得一点,例如:

do.call(rbind, lapply(split(DF2, DF2$group), `[`, 1, ))

> system.time(replicate(1000, do.call(rbind, lapply(split(DF2, DF2$group), `[`, 1, ))))
   user  system elapsed 
  3.847   0.040   4.044
> system.time(replicate(1000, do.call(rbind, lapply(split(DF2, DF2$group), head, 1))))
   user  system elapsed 
  4.058   0.038   4.111
> system.time(replicate(1000, aggregate(DF2[,-2], DF2["group"], function (x) x[1])))
   user  system elapsed 
  3.902   0.042   4.106

答案 2 :(得分:1)

我认为这会解决问题:

aggregate(data["idu"], data["group"], function (x) x[1])

对于您的更新问题,我建议您使用ddply包中的plyr

ddply(data, .(group), function (x) x[1,])

答案 3 :(得分:1)

使用plyr的一个解决方案,假设您的数据位于名为zzz的对象中:

ddply(zzz, "group", function(x) x[1 ,])

获取行之间差异的另一个选项应该证明更快,但依赖于事先订购的对象。这也假设您没有组值0:

zzz <- zzz[order(zzz$group) ,]

zzz[ diff(c(0,zzz$group)) != 0, ]